This documentation is automatically generated by online-judge-tools/verification-helper
#include "tree/common_interval_decomposition_tree.hpp"
Common Interval Decomposition Tree (別称:Permutation Tree) を構築する。 $O(N\log{N})$
#pragma once
#include <cassert>
#include <cstdint>
#include <numeric>
#include <vector>
#include "../data_structure/sparse_table.hpp"
/*
reference: https://www.mathenachia.blog/permutation-tree/
*/
namespace ebi {
struct common_interval_decomposition_tree {
public:
enum NodeType {
Prime,
Inc,
Dec,
One,
};
struct Node {
int parent;
NodeType type;
int l, r;
std::vector<int> child;
bool is_prime() const {
return type == Prime;
}
bool is_linear() const {
return type != Prime;
}
bool is_leaf() const {
return type == One;
}
};
private:
static int op(int a, int b) {
return a < b ? a : b;
}
void build(const std::vector<int> &p) {
int n = (int)p.size();
std::vector<int> q(n, -1);
for (int i = 0; i < n; i++) {
assert(0 <= p[i] && p[i] < n && q[p[i]] == -1);
q[p[i]] = i;
}
sparse_table<int, op> static_range_min(q);
struct LeftBase {
int l;
int vl, vr;
};
struct Common {
int l, r, v;
};
std::vector<LeftBase> stack;
std::vector<Common> commons;
for (int r = 1; r <= n; r++) {
int a = p[r - 1];
LeftBase y = {r - 1, a, a + 1};
while (!stack.empty()) {
if (y.vl < stack.back().vl) stack.back().vl = y.vl;
if (y.vr > stack.back().vr) stack.back().vr = y.vr;
auto x = stack.back();
if (static_range_min.fold(x.vl, x.vr) < x.l) {
stack.pop_back();
auto &new_x = stack.back();
if (x.vl < new_x.vl) new_x.vl = x.vl;
if (x.vr > new_x.vr) new_x.vr = x.vr;
} else if (x.vr - x.vl == r - x.l) {
y = x;
stack.pop_back();
commons.emplace_back(x.l, r, x.vl);
} else {
break;
}
}
stack.push_back(y);
}
while (stack.size() >= 2) {
auto x = stack.back();
stack.pop_back();
auto &new_x = stack.back();
if (x.vl < new_x.vl) new_x.vl = x.vl;
if (x.vr > new_x.vr) new_x.vr = x.vr;
if (new_x.vr - new_x.vl == n - new_x.l) {
commons.emplace_back(new_x.l, n, new_x.vl);
}
}
assert(stack.size() == 1);
for (int i = 0; i < n; i++) tree.emplace_back(-1, One, i, i + 1);
std::vector<int> id(n);
std::iota(id.begin(), id.end(), 0);
std::vector<int> right_list(n);
std::iota(right_list.begin(), right_list.end(), 1);
for (auto common : commons) {
int m = right_list[common.l];
if (right_list[m] == common.r) {
int a = id[common.l];
int b = id[m];
right_list[common.l] = common.r;
auto t = p[common.l] < p[common.r - 1] ? Inc : Dec;
if (tree[a].type == t) {
tree[b].parent = a;
tree[a].r = common.r;
tree[a].child.push_back(b);
} else {
int c = (int)tree.size();
tree.emplace_back(-1, t, common.l, common.r,
std::vector<int>{a, b});
tree[a].parent = c;
tree[b].parent = c;
id[common.l] = c;
}
} else {
int c = (int)tree.size();
tree.emplace_back(-1, Prime, common.l, common.r);
for (int i = common.l; i < common.r; i = right_list[i]) {
tree[id[i]].parent = c;
tree.back().child.push_back(id[i]);
}
id[common.l] = c;
right_list[common.l] = common.r;
}
}
root = id[0];
}
public:
common_interval_decomposition_tree(const std::vector<int> &p) {
build(p);
}
std::vector<Node> get_tree() const {
return tree;
}
int root_id() const {
return root;
}
Node get_node(int i) const {
assert(0 <= i && i < (int)tree.size());
return tree[i];
}
std::int64_t count_connected_interval() const {
std::int64_t count = 0;
for (const auto &node : tree) {
if (node.type == Inc || node.type == Dec) {
std::int64_t len = (int)node.child.size();
count += len * (len - 1) / 2;
} else {
count++;
}
}
return count;
}
private:
int root;
std::vector<Node> tree;
};
} // namespace ebi
#line 2 "tree/common_interval_decomposition_tree.hpp"
#include <cassert>
#include <cstdint>
#include <numeric>
#include <vector>
#line 2 "data_structure/sparse_table.hpp"
#line 4 "data_structure/sparse_table.hpp"
/*
reference: https://scrapbox.io/data-structures/Sparse_Table
*/
namespace ebi {
template <class Band, Band (*op)(Band, Band)> struct sparse_table {
public:
sparse_table() = default;
sparse_table(const std::vector<Band> &a) : n(a.size()) {
table = std::vector(std::__lg(n) + 1, std::vector<Band>(n));
for (int i = 0; i < n; i++) {
table[0][i] = a[i];
}
for (int k = 1; (1 << k) <= n; k++) {
for (int i = 0; i + (1 << k) <= n; i++) {
table[k][i] =
op(table[k - 1][i], table[k - 1][i + (1 << (k - 1))]);
}
}
}
void build(const std::vector<Band> &a) {
n = (int)a.size();
table = std::vector(std::__lg(n) + 1, std::vector<Band>(n));
for (int i = 0; i < n; i++) {
table[0][i] = a[i];
}
for (int k = 1; (1 << k) <= n; k++) {
for (int i = 0; i + (1 << k) <= n; i++) {
table[k][i] =
op(table[k - 1][i], table[k - 1][i + (1 << (k - 1))]);
}
}
}
// [l, r)
Band fold(int l, int r) {
int k = std::__lg(r - l);
return op(table[k][l], table[k][r - (1 << k)]);
}
private:
int n;
std::vector<std::vector<Band>> table;
};
} // namespace ebi
#line 9 "tree/common_interval_decomposition_tree.hpp"
/*
reference: https://www.mathenachia.blog/permutation-tree/
*/
namespace ebi {
struct common_interval_decomposition_tree {
public:
enum NodeType {
Prime,
Inc,
Dec,
One,
};
struct Node {
int parent;
NodeType type;
int l, r;
std::vector<int> child;
bool is_prime() const {
return type == Prime;
}
bool is_linear() const {
return type != Prime;
}
bool is_leaf() const {
return type == One;
}
};
private:
static int op(int a, int b) {
return a < b ? a : b;
}
void build(const std::vector<int> &p) {
int n = (int)p.size();
std::vector<int> q(n, -1);
for (int i = 0; i < n; i++) {
assert(0 <= p[i] && p[i] < n && q[p[i]] == -1);
q[p[i]] = i;
}
sparse_table<int, op> static_range_min(q);
struct LeftBase {
int l;
int vl, vr;
};
struct Common {
int l, r, v;
};
std::vector<LeftBase> stack;
std::vector<Common> commons;
for (int r = 1; r <= n; r++) {
int a = p[r - 1];
LeftBase y = {r - 1, a, a + 1};
while (!stack.empty()) {
if (y.vl < stack.back().vl) stack.back().vl = y.vl;
if (y.vr > stack.back().vr) stack.back().vr = y.vr;
auto x = stack.back();
if (static_range_min.fold(x.vl, x.vr) < x.l) {
stack.pop_back();
auto &new_x = stack.back();
if (x.vl < new_x.vl) new_x.vl = x.vl;
if (x.vr > new_x.vr) new_x.vr = x.vr;
} else if (x.vr - x.vl == r - x.l) {
y = x;
stack.pop_back();
commons.emplace_back(x.l, r, x.vl);
} else {
break;
}
}
stack.push_back(y);
}
while (stack.size() >= 2) {
auto x = stack.back();
stack.pop_back();
auto &new_x = stack.back();
if (x.vl < new_x.vl) new_x.vl = x.vl;
if (x.vr > new_x.vr) new_x.vr = x.vr;
if (new_x.vr - new_x.vl == n - new_x.l) {
commons.emplace_back(new_x.l, n, new_x.vl);
}
}
assert(stack.size() == 1);
for (int i = 0; i < n; i++) tree.emplace_back(-1, One, i, i + 1);
std::vector<int> id(n);
std::iota(id.begin(), id.end(), 0);
std::vector<int> right_list(n);
std::iota(right_list.begin(), right_list.end(), 1);
for (auto common : commons) {
int m = right_list[common.l];
if (right_list[m] == common.r) {
int a = id[common.l];
int b = id[m];
right_list[common.l] = common.r;
auto t = p[common.l] < p[common.r - 1] ? Inc : Dec;
if (tree[a].type == t) {
tree[b].parent = a;
tree[a].r = common.r;
tree[a].child.push_back(b);
} else {
int c = (int)tree.size();
tree.emplace_back(-1, t, common.l, common.r,
std::vector<int>{a, b});
tree[a].parent = c;
tree[b].parent = c;
id[common.l] = c;
}
} else {
int c = (int)tree.size();
tree.emplace_back(-1, Prime, common.l, common.r);
for (int i = common.l; i < common.r; i = right_list[i]) {
tree[id[i]].parent = c;
tree.back().child.push_back(id[i]);
}
id[common.l] = c;
right_list[common.l] = common.r;
}
}
root = id[0];
}
public:
common_interval_decomposition_tree(const std::vector<int> &p) {
build(p);
}
std::vector<Node> get_tree() const {
return tree;
}
int root_id() const {
return root;
}
Node get_node(int i) const {
assert(0 <= i && i < (int)tree.size());
return tree[i];
}
std::int64_t count_connected_interval() const {
std::int64_t count = 0;
for (const auto &node : tree) {
if (node.type == Inc || node.type == Dec) {
std::int64_t len = (int)node.child.size();
count += len * (len - 1) / 2;
} else {
count++;
}
}
return count;
}
private:
int root;
std::vector<Node> tree;
};
} // namespace ebi