This documentation is automatically generated by online-judge-tools/verification-helper
#define PROBLEM "https://yukicoder.me/problems/no/1720"
#include "../../convolution/convolution.hpp"
#include "../../math/binomial.hpp"
#include "../../modint/modint.hpp"
#include "../../template/template.hpp"
#include "../../tree/common_interval_decomposition_tree.hpp"
namespace ebi {
using mint = modint998244353;
void main_() {
int n, k;
std::cin >> n >> k;
std::vector<int> p(n);
std::cin >> p;
rep(i, 0, n) p[i]--;
Binomial<mint> binom(n);
common_interval_decomposition_tree permutation_tree(p);
auto dfs = [&](auto &&self, int v) -> std::vector<mint> {
auto node = permutation_tree.get_node(v);
if (node.is_leaf()) {
std::vector<mint> ret(k + 1, 0);
ret[1] = 1;
return ret;
}
std::vector<mint> ret(k + 1, 0), prev(k + 1, 0), sum(k + 1, 0);
ret[0] = 1;
prev[0] = 1;
for (auto ch : node.child) {
ret = convolution_naive(ret, self(self, ch));
ret.resize(k + 1);
if (node.is_linear()) {
rep(i, 0, k) {
ret[i + 1] += sum[i];
}
}
rep(i,0,k) {
sum[i] += prev[i];
}
prev = ret;
}
ret.resize(k + 1);
if (node.is_prime()) ret[1]++;
return ret;
};
auto ans = dfs(dfs, permutation_tree.root_id());
ans.resize(k + 1);
rep(i, 1, k + 1) {
std::cout << ans[i] << '\n';
}
}
} // namespace ebi
int main() {
ebi::fast_io();
int t = 1;
// std::cin >> t;
while (t--) {
ebi::main_();
}
return 0;
}
#line 1 "test/yuki/yuki_1720.test.cpp"
#define PROBLEM "https://yukicoder.me/problems/no/1720"
#line 2 "convolution/convolution.hpp"
#include <algorithm>
#include <bit>
#include <vector>
#line 2 "convolution/ntt.hpp"
#line 4 "convolution/ntt.hpp"
#include <array>
#line 6 "convolution/ntt.hpp"
#include <cassert>
#line 8 "convolution/ntt.hpp"
#line 2 "math/internal_math.hpp"
#line 4 "math/internal_math.hpp"
namespace ebi {
namespace internal {
constexpr int primitive_root_constexpr(int m) {
if (m == 2) return 1;
if (m == 167772161) return 3;
if (m == 469762049) return 3;
if (m == 754974721) return 11;
if (m == 998244353) return 3;
if (m == 880803841) return 26;
if (m == 924844033) return 5;
return -1;
}
template <int m> constexpr int primitive_root = primitive_root_constexpr(m);
} // namespace internal
} // namespace ebi
#line 2 "modint/base.hpp"
#include <concepts>
#include <iostream>
#include <utility>
namespace ebi {
template <class T>
concept Modint = requires(T a, T b) {
a + b;
a - b;
a * b;
a / b;
a.inv();
a.val();
a.pow(std::declval<long long>());
T::mod();
};
template <Modint mint> std::istream &operator>>(std::istream &os, mint &a) {
long long x;
os >> x;
a = x;
return os;
}
template <Modint mint>
std::ostream &operator<<(std::ostream &os, const mint &a) {
return os << a.val();
}
} // namespace ebi
#line 2 "template/int_alias.hpp"
#include <cstdint>
namespace ebi {
using ld = long double;
using std::size_t;
using i8 = std::int8_t;
using u8 = std::uint8_t;
using i16 = std::int16_t;
using u16 = std::uint16_t;
using i32 = std::int32_t;
using u32 = std::uint32_t;
using i64 = std::int64_t;
using u64 = std::uint64_t;
using i128 = __int128_t;
using u128 = __uint128_t;
} // namespace ebi
#line 12 "convolution/ntt.hpp"
namespace ebi {
namespace internal {
template <Modint mint, int g = internal::primitive_root<mint::mod()>>
struct ntt_info {
static constexpr int rank2 =
std::countr_zero((unsigned int)(mint::mod() - 1));
std::array<mint, rank2 + 1> root, inv_root;
ntt_info() {
root[rank2] = mint(g).pow((mint::mod() - 1) >> rank2);
inv_root[rank2] = root[rank2].inv();
for (int i = rank2 - 1; i >= 0; i--) {
root[i] = root[i + 1] * root[i + 1];
inv_root[i] = inv_root[i + 1] * inv_root[i + 1];
}
}
};
template <Modint mint> void fft2(std::vector<mint>& a) {
static const ntt_info<mint> info;
int n = int(a.size());
int bit_size = std::countr_zero(a.size());
assert(n == 1 << bit_size);
for (int bit = bit_size - 1; bit >= 0; bit--) {
int m = 1 << bit;
for (int i = 0; i < n; i += 2 * m) {
mint w = 1;
for (int j = 0; j < m; j++) {
mint p1 = a[i + j];
mint p2 = a[i + j + m];
a[i + j] = p1 + p2;
a[i + j + m] = (p1 - p2) * w;
w *= info.root[bit + 1];
}
}
}
}
template <Modint mint> void ifft2(std::vector<mint>& a) {
static const ntt_info<mint> info;
int n = int(a.size());
int bit_size = std::countr_zero(a.size());
assert(n == 1 << bit_size);
for (int bit = 0; bit < bit_size; bit++) {
for (int i = 0; i < n / (1 << (bit + 1)); i++) {
mint w = 1;
for (int j = 0; j < (1 << bit); j++) {
int idx = i * (1 << (bit + 1)) + j;
int jdx = idx + (1 << bit);
mint p1 = a[idx];
mint p2 = w * a[jdx];
a[idx] = p1 + p2;
a[jdx] = p1 - p2;
w *= info.inv_root[bit + 1];
}
}
}
}
template <Modint mint> void fft4(std::vector<mint>& a) {
static const ntt_info<mint> info;
const u32 mod = mint::mod();
const u64 iw = info.root[2].val();
int n = int(a.size());
int bit_size = std::countr_zero(a.size());
assert(n == 1 << bit_size);
int len = bit_size;
while (len > 0) {
if (len == 1) {
for (int i = 0; i < n; i += 2) {
mint p0 = a[i];
mint p1 = a[i + 1];
a[i] = p0 + p1;
a[i + 1] = p0 - p1;
}
len--;
} else {
int m = 1 << (len - 2);
u64 w1 = 1, w2 = 1, w3 = 1, iw1 = iw, iw3 = iw;
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j += 4 * m) {
int i0 = i + j, i1 = i0 + m, i2 = i1 + m, i3 = i2 + m;
u32 a0 = a[i0].val();
u32 a1 = a[i1].val();
u32 a2 = a[i2].val();
u32 a3 = a[i3].val();
u32 a0_plus_a2 = a0 + a2;
u32 a1_plus_a3 = a1 + a3;
u32 a0_minus_a2 = a0 + mod - a2;
u32 a1_minus_a3 = a1 + mod - a3;
a[i0] = a0_plus_a2 + a1_plus_a3;
a[i1] = a0_minus_a2 * w1 + a1_minus_a3 * iw1;
a[i2] = (a0_plus_a2 + 2 * mod - a1_plus_a3) * w2;
a[i3] = a0_minus_a2 * w3 + (2 * mod - a1_minus_a3) * iw3;
}
w1 = w1 * info.root[len].val() % mod;
w2 = w1 * w1 % mod;
w3 = w2 * w1 % mod;
iw1 = iw * w1 % mod;
iw3 = iw * w3 % mod;
}
len -= 2;
}
}
}
template <Modint mint> void ifft4(std::vector<mint>& a) {
static const ntt_info<mint> info;
const u32 mod = mint::mod();
const u64 mod2 = u64(mod) * mod;
const u64 iw = info.inv_root[2].val();
int n = int(a.size());
int bit_size = std::countr_zero(a.size());
assert(n == 1 << bit_size);
int len = (bit_size & 1 ? 1 : 2);
while (len <= bit_size) {
if (len == 1) {
for (int i = 0; i < n; i += 2) {
mint a0 = a[i];
mint a1 = a[i + 1];
a[i] = a0 + a1;
a[i + 1] = a0 - a1;
}
} else {
int m = 1 << (len - 2);
u64 w1 = 1, w2 = 1, w3 = 1, iw1 = iw, iw3 = iw;
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j += 4 * m) {
int i0 = i + j, i1 = i0 + m, i2 = i1 + m, i3 = i2 + m;
u64 a0 = a[i0].val();
u64 a1 = w1 * a[i1].val();
u64 a2 = w2 * a[i2].val();
u64 a3 = w3 * a[i3].val();
u64 b1 = iw1 * a[i1].val();
u64 b3 = iw3 * a[i3].val();
u64 a0_plus_a2 = a0 + a2;
u64 a1_plus_a3 = a1 + a3;
u64 a0_minus_a2 = a0 + mod2 - a2;
u64 b1_minus_b3 = b1 + mod2 - b3;
a[i0] = a0_plus_a2 + a1_plus_a3;
a[i1] = a0_minus_a2 + b1_minus_b3;
a[i2] = a0_plus_a2 + mod2 * 2 - a1_plus_a3;
a[i3] = a0_minus_a2 + mod2 * 2 - b1_minus_b3;
}
w1 = w1 * info.inv_root[len].val() % mod;
w2 = w1 * w1 % mod;
w3 = w2 * w1 % mod;
iw1 = iw * w1 % mod;
iw3 = iw * w3 % mod;
}
}
len += 2;
}
}
} // namespace internal
} // namespace ebi
#line 9 "convolution/convolution.hpp"
namespace ebi {
template <Modint mint>
std::vector<mint> convolution_naive(const std::vector<mint>& f,
const std::vector<mint>& g) {
if (f.empty() || g.empty()) return {};
int n = int(f.size()), m = int(g.size());
std::vector<mint> c(n + m - 1);
if (n < m) {
for (int j = 0; j < m; j++) {
for (int i = 0; i < n; i++) {
c[i + j] += f[i] * g[j];
}
}
} else {
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
c[i + j] += f[i] * g[j];
}
}
}
return c;
}
template <Modint mint>
std::vector<mint> convolution(const std::vector<mint>& f,
const std::vector<mint>& g) {
if (f.empty() || g.empty()) return {};
if (std::min(f.size(), g.size()) < 60) return convolution_naive(f, g);
int n = (int)std::bit_ceil(f.size() + g.size() - 1);
std::vector<mint> a(n), b(n);
std::copy(f.begin(), f.end(), a.begin());
std::copy(g.begin(), g.end(), b.begin());
internal::fft4(a);
internal::fft4(b);
for (int i = 0; i < n; i++) {
a[i] *= b[i];
}
internal::ifft4(a);
a.resize(f.size() + g.size() - 1);
mint inv_n = mint(n).inv();
for (auto& x : a) x *= inv_n;
return a;
}
} // namespace ebi
#line 2 "math/binomial.hpp"
#line 7 "math/binomial.hpp"
#include <ranges>
#line 9 "math/binomial.hpp"
#line 11 "math/binomial.hpp"
namespace ebi {
template <Modint mint> struct Binomial {
private:
static void extend(int len = -1) {
int sz = (int)fact.size();
if (len < 0)
len = 2 * sz;
else if (len <= sz)
return;
else
len = std::max(2 * sz, (int)std::bit_ceil(std::uint32_t(len)));
len = std::min(len, mint::mod());
assert(sz <= len);
fact.resize(len);
inv_fact.resize(len);
for (int i : std::views::iota(sz, len)) {
fact[i] = fact[i - 1] * i;
}
inv_fact[len - 1] = fact[len - 1].inv();
for (int i : std::views::iota(sz, len) | std::views::reverse) {
inv_fact[i - 1] = inv_fact[i] * i;
}
}
public:
Binomial() = default;
Binomial(int n) {
extend(n + 1);
}
static mint f(int n) {
if (n >= (int)fact.size()) [[unlikely]] {
extend(n + 1);
}
return fact[n];
}
static mint inv_f(int n) {
if (n >= (int)fact.size()) [[unlikely]] {
extend(n + 1);
}
return inv_fact[n];
}
static mint c(int n, int r) {
if (r < 0 || n < r) return 0;
return f(n) * inv_f(r) * inv_f(n - r);
}
static mint neg_c(int k, int d) {
assert(d > 0);
return c(k + d - 1, d - 1);
}
static mint p(int n, int r) {
if (r < 0 || n < r) return 0;
return f(n) * inv_f(n - r);
}
static mint catalan_number(int n) {
return c(2 * n, n) * inv(n + 1);
}
static mint inv(int n) {
return inv_f(n) * f(n - 1);
}
static void reserve(int n) {
extend(n + 1);
}
private:
static std::vector<mint> fact, inv_fact;
};
template <Modint mint>
std::vector<mint> Binomial<mint>::fact = std::vector<mint>(2, 1);
template <Modint mint>
std::vector<mint> Binomial<mint>::inv_fact = std::vector<mint>(2, 1);
} // namespace ebi
#line 2 "modint/modint.hpp"
#line 5 "modint/modint.hpp"
#line 7 "modint/modint.hpp"
namespace ebi {
template <int m> struct static_modint {
private:
using modint = static_modint;
public:
static constexpr int mod() {
return m;
}
static constexpr modint raw(int v) {
modint x;
x._v = v;
return x;
}
constexpr static_modint() : _v(0) {}
template <std::signed_integral T> constexpr static_modint(T v) {
long long x = (long long)(v % (long long)(umod()));
if (x < 0) x += umod();
_v = (unsigned int)(x);
}
template <std::unsigned_integral T> constexpr static_modint(T v) {
_v = (unsigned int)(v % umod());
}
constexpr unsigned int val() const {
return _v;
}
constexpr unsigned int value() const {
return val();
}
constexpr modint &operator++() {
_v++;
if (_v == umod()) _v = 0;
return *this;
}
constexpr modint &operator--() {
if (_v == 0) _v = umod();
_v--;
return *this;
}
constexpr modint operator++(int) {
modint res = *this;
++*this;
return res;
}
constexpr modint operator--(int) {
modint res = *this;
--*this;
return res;
}
constexpr modint &operator+=(const modint &rhs) {
_v += rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
constexpr modint &operator-=(const modint &rhs) {
_v -= rhs._v;
if (_v >= umod()) _v += umod();
return *this;
}
constexpr modint &operator*=(const modint &rhs) {
unsigned long long x = _v;
x *= rhs._v;
_v = (unsigned int)(x % (unsigned long long)umod());
return *this;
}
constexpr modint &operator/=(const modint &rhs) {
return *this = *this * rhs.inv();
}
constexpr modint operator+() const {
return *this;
}
constexpr modint operator-() const {
return modint() - *this;
}
constexpr modint pow(long long n) const {
assert(0 <= n);
modint x = *this, res = 1;
while (n) {
if (n & 1) res *= x;
x *= x;
n >>= 1;
}
return res;
}
constexpr modint inv() const {
assert(_v);
return pow(umod() - 2);
}
friend modint operator+(const modint &lhs, const modint &rhs) {
return modint(lhs) += rhs;
}
friend modint operator-(const modint &lhs, const modint &rhs) {
return modint(lhs) -= rhs;
}
friend modint operator*(const modint &lhs, const modint &rhs) {
return modint(lhs) *= rhs;
}
friend modint operator/(const modint &lhs, const modint &rhs) {
return modint(lhs) /= rhs;
}
friend bool operator==(const modint &lhs, const modint &rhs) {
return lhs.val() == rhs.val();
}
friend bool operator!=(const modint &lhs, const modint &rhs) {
return !(lhs == rhs);
}
private:
unsigned int _v = 0;
static constexpr unsigned int umod() {
return m;
}
};
using modint998244353 = static_modint<998244353>;
using modint1000000007 = static_modint<1000000007>;
} // namespace ebi
#line 1 "template/template.hpp"
#include <bits/stdc++.h>
#define rep(i, a, n) for (int i = (int)(a); i < (int)(n); i++)
#define rrep(i, a, n) for (int i = ((int)(n)-1); i >= (int)(a); i--)
#define Rep(i, a, n) for (i64 i = (i64)(a); i < (i64)(n); i++)
#define RRep(i, a, n) for (i64 i = ((i64)(n)-i64(1)); i >= (i64)(a); i--)
#define all(v) (v).begin(), (v).end()
#define rall(v) (v).rbegin(), (v).rend()
#line 2 "template/debug_template.hpp"
#line 4 "template/debug_template.hpp"
namespace ebi {
#ifdef LOCAL
#define debug(...) \
std::cerr << "LINE: " << __LINE__ << " [" << #__VA_ARGS__ << "]:", \
debug_out(__VA_ARGS__)
#else
#define debug(...)
#endif
void debug_out() {
std::cerr << std::endl;
}
template <typename Head, typename... Tail> void debug_out(Head h, Tail... t) {
std::cerr << " " << h;
if (sizeof...(t) > 0) std::cerr << " :";
debug_out(t...);
}
} // namespace ebi
#line 2 "template/io.hpp"
#line 5 "template/io.hpp"
#include <optional>
#line 7 "template/io.hpp"
namespace ebi {
template <typename T1, typename T2>
std::ostream &operator<<(std::ostream &os, const std::pair<T1, T2> &pa) {
return os << pa.first << " " << pa.second;
}
template <typename T1, typename T2>
std::istream &operator>>(std::istream &os, std::pair<T1, T2> &pa) {
return os >> pa.first >> pa.second;
}
template <typename T>
std::ostream &operator<<(std::ostream &os, const std::vector<T> &vec) {
for (std::size_t i = 0; i < vec.size(); i++)
os << vec[i] << (i + 1 == vec.size() ? "" : " ");
return os;
}
template <typename T>
std::istream &operator>>(std::istream &os, std::vector<T> &vec) {
for (T &e : vec) std::cin >> e;
return os;
}
template <typename T>
std::ostream &operator<<(std::ostream &os, const std::optional<T> &opt) {
if (opt) {
os << opt.value();
} else {
os << "invalid value";
}
return os;
}
void fast_io() {
std::cout << std::fixed << std::setprecision(15);
std::cin.tie(nullptr);
std::ios::sync_with_stdio(false);
}
} // namespace ebi
#line 2 "template/utility.hpp"
#line 5 "template/utility.hpp"
#line 2 "graph/base.hpp"
#line 7 "graph/base.hpp"
#line 2 "data_structure/simple_csr.hpp"
#line 6 "data_structure/simple_csr.hpp"
namespace ebi {
template <class E> struct simple_csr {
simple_csr() = default;
simple_csr(int n, const std::vector<std::pair<int, E>>& elements)
: start(n + 1, 0), elist(elements.size()) {
for (auto e : elements) {
start[e.first + 1]++;
}
for (auto i : std::views::iota(0, n)) {
start[i + 1] += start[i];
}
auto counter = start;
for (auto [i, e] : elements) {
elist[counter[i]++] = e;
}
}
simple_csr(const std::vector<std::vector<E>>& es)
: start(es.size() + 1, 0) {
int n = es.size();
for (auto i : std::views::iota(0, n)) {
start[i + 1] = (int)es[i].size() + start[i];
}
elist.resize(start.back());
for (auto i : std::views::iota(0, n)) {
std::copy(es[i].begin(), es[i].end(), elist.begin() + start[i]);
}
}
int size() const {
return (int)start.size() - 1;
}
const auto operator[](int i) const {
return std::ranges::subrange(elist.begin() + start[i],
elist.begin() + start[i + 1]);
}
auto operator[](int i) {
return std::ranges::subrange(elist.begin() + start[i],
elist.begin() + start[i + 1]);
}
const auto operator()(int i, int l, int r) const {
return std::ranges::subrange(elist.begin() + start[i] + l,
elist.begin() + start[i + 1] + r);
}
auto operator()(int i, int l, int r) {
return std::ranges::subrange(elist.begin() + start[i] + l,
elist.begin() + start[i + 1] + r);
}
private:
std::vector<int> start;
std::vector<E> elist;
};
} // namespace ebi
#line 9 "graph/base.hpp"
namespace ebi {
template <class T> struct Edge {
int from, to;
T cost;
int id;
};
template <class E> struct Graph {
using cost_type = E;
using edge_type = Edge<cost_type>;
Graph(int n_) : n(n_) {}
Graph() = default;
void add_edge(int u, int v, cost_type c) {
assert(!prepared && u < n && v < n);
buff.emplace_back(u, edge_type{u, v, c, m});
edges.emplace_back(edge_type{u, v, c, m++});
}
void add_undirected_edge(int u, int v, cost_type c) {
assert(!prepared && u < n && v < n);
buff.emplace_back(u, edge_type{u, v, c, m});
buff.emplace_back(v, edge_type{v, u, c, m});
edges.emplace_back(edge_type{u, v, c, m});
m++;
}
void read_tree(int offset = 1, bool is_weighted = false) {
read_graph(n - 1, offset, false, is_weighted);
}
void read_parents(int offset = 1) {
for (auto i : std::views::iota(1, n)) {
int p;
std::cin >> p;
p -= offset;
add_undirected_edge(p, i, 1);
}
build();
}
void read_graph(int e, int offset = 1, bool is_directed = false,
bool is_weighted = false) {
for (int i = 0; i < e; i++) {
int u, v;
std::cin >> u >> v;
u -= offset;
v -= offset;
if (is_weighted) {
cost_type c;
std::cin >> c;
if (is_directed) {
add_edge(u, v, c);
} else {
add_undirected_edge(u, v, c);
}
} else {
if (is_directed) {
add_edge(u, v, 1);
} else {
add_undirected_edge(u, v, 1);
}
}
}
build();
}
void build() {
assert(!prepared);
csr = simple_csr<edge_type>(n, buff);
buff.clear();
prepared = true;
}
int size() const {
return n;
}
int node_number() const {
return n;
}
int edge_number() const {
return m;
}
edge_type get_edge(int i) const {
assert(prepared);
return edges[i];
}
std::vector<edge_type> get_edges() const {
assert(prepared);
return edges;
}
const auto operator[](int i) const {
assert(prepared);
return csr[i];
}
auto operator[](int i) {
assert(prepared);
return csr[i];
}
private:
int n, m = 0;
std::vector<std::pair<int, edge_type>> buff;
std::vector<edge_type> edges;
simple_csr<edge_type> csr;
bool prepared = false;
};
} // namespace ebi
#line 8 "template/utility.hpp"
namespace ebi {
template <class T> inline bool chmin(T &a, T b) {
if (a > b) {
a = b;
return true;
}
return false;
}
template <class T> inline bool chmax(T &a, T b) {
if (a < b) {
a = b;
return true;
}
return false;
}
template <class T> T safe_ceil(T a, T b) {
if (a % b == 0)
return a / b;
else if (a >= 0)
return (a / b) + 1;
else
return -((-a) / b);
}
template <class T> T safe_floor(T a, T b) {
if (a % b == 0)
return a / b;
else if (a >= 0)
return a / b;
else
return -((-a) / b) - 1;
}
constexpr i64 LNF = std::numeric_limits<i64>::max() / 4;
constexpr int INF = std::numeric_limits<int>::max() / 2;
const std::vector<int> dy = {1, 0, -1, 0, 1, 1, -1, -1};
const std::vector<int> dx = {0, 1, 0, -1, 1, -1, 1, -1};
} // namespace ebi
#line 2 "tree/common_interval_decomposition_tree.hpp"
#line 7 "tree/common_interval_decomposition_tree.hpp"
#line 2 "data_structure/sparse_table.hpp"
#line 4 "data_structure/sparse_table.hpp"
/*
reference: https://scrapbox.io/data-structures/Sparse_Table
*/
namespace ebi {
template <class Band, Band (*op)(Band, Band)> struct sparse_table {
public:
sparse_table() = default;
sparse_table(const std::vector<Band> &a) : n(a.size()) {
table = std::vector(std::__lg(n) + 1, std::vector<Band>(n));
for (int i = 0; i < n; i++) {
table[0][i] = a[i];
}
for (int k = 1; (1 << k) <= n; k++) {
for (int i = 0; i + (1 << k) <= n; i++) {
table[k][i] =
op(table[k - 1][i], table[k - 1][i + (1 << (k - 1))]);
}
}
}
void build(const std::vector<Band> &a) {
n = (int)a.size();
table = std::vector(std::__lg(n) + 1, std::vector<Band>(n));
for (int i = 0; i < n; i++) {
table[0][i] = a[i];
}
for (int k = 1; (1 << k) <= n; k++) {
for (int i = 0; i + (1 << k) <= n; i++) {
table[k][i] =
op(table[k - 1][i], table[k - 1][i + (1 << (k - 1))]);
}
}
}
// [l, r)
Band fold(int l, int r) {
int k = std::__lg(r - l);
return op(table[k][l], table[k][r - (1 << k)]);
}
private:
int n;
std::vector<std::vector<Band>> table;
};
} // namespace ebi
#line 9 "tree/common_interval_decomposition_tree.hpp"
/*
reference: https://www.mathenachia.blog/permutation-tree/
*/
namespace ebi {
struct common_interval_decomposition_tree {
public:
enum NodeType {
Prime,
Inc,
Dec,
One,
};
struct Node {
int parent;
NodeType type;
int l, r;
std::vector<int> child;
bool is_prime() const {
return type == Prime;
}
bool is_linear() const {
return type != Prime;
}
bool is_leaf() const {
return type == One;
}
};
private:
static int op(int a, int b) {
return a < b ? a : b;
}
void build(const std::vector<int> &p) {
int n = (int)p.size();
std::vector<int> q(n, -1);
for (int i = 0; i < n; i++) {
assert(0 <= p[i] && p[i] < n && q[p[i]] == -1);
q[p[i]] = i;
}
sparse_table<int, op> static_range_min(q);
struct LeftBase {
int l;
int vl, vr;
};
struct Common {
int l, r, v;
};
std::vector<LeftBase> stack;
std::vector<Common> commons;
for (int r = 1; r <= n; r++) {
int a = p[r - 1];
LeftBase y = {r - 1, a, a + 1};
while (!stack.empty()) {
if (y.vl < stack.back().vl) stack.back().vl = y.vl;
if (y.vr > stack.back().vr) stack.back().vr = y.vr;
auto x = stack.back();
if (static_range_min.fold(x.vl, x.vr) < x.l) {
stack.pop_back();
auto &new_x = stack.back();
if (x.vl < new_x.vl) new_x.vl = x.vl;
if (x.vr > new_x.vr) new_x.vr = x.vr;
} else if (x.vr - x.vl == r - x.l) {
y = x;
stack.pop_back();
commons.emplace_back(x.l, r, x.vl);
} else {
break;
}
}
stack.push_back(y);
}
while (stack.size() >= 2) {
auto x = stack.back();
stack.pop_back();
auto &new_x = stack.back();
if (x.vl < new_x.vl) new_x.vl = x.vl;
if (x.vr > new_x.vr) new_x.vr = x.vr;
if (new_x.vr - new_x.vl == n - new_x.l) {
commons.emplace_back(new_x.l, n, new_x.vl);
}
}
assert(stack.size() == 1);
for (int i = 0; i < n; i++) tree.emplace_back(-1, One, i, i + 1);
std::vector<int> id(n);
std::iota(id.begin(), id.end(), 0);
std::vector<int> right_list(n);
std::iota(right_list.begin(), right_list.end(), 1);
for (auto common : commons) {
int m = right_list[common.l];
if (right_list[m] == common.r) {
int a = id[common.l];
int b = id[m];
right_list[common.l] = common.r;
auto t = p[common.l] < p[common.r - 1] ? Inc : Dec;
if (tree[a].type == t) {
tree[b].parent = a;
tree[a].r = common.r;
tree[a].child.push_back(b);
} else {
int c = (int)tree.size();
tree.emplace_back(-1, t, common.l, common.r,
std::vector<int>{a, b});
tree[a].parent = c;
tree[b].parent = c;
id[common.l] = c;
}
} else {
int c = (int)tree.size();
tree.emplace_back(-1, Prime, common.l, common.r);
for (int i = common.l; i < common.r; i = right_list[i]) {
tree[id[i]].parent = c;
tree.back().child.push_back(id[i]);
}
id[common.l] = c;
right_list[common.l] = common.r;
}
}
root = id[0];
}
public:
common_interval_decomposition_tree(const std::vector<int> &p) {
build(p);
}
std::vector<Node> get_tree() const {
return tree;
}
int root_id() const {
return root;
}
Node get_node(int i) const {
assert(0 <= i && i < (int)tree.size());
return tree[i];
}
std::int64_t count_connected_interval() const {
std::int64_t count = 0;
for (const auto &node : tree) {
if (node.type == Inc || node.type == Dec) {
std::int64_t len = (int)node.child.size();
count += len * (len - 1) / 2;
} else {
count++;
}
}
return count;
}
private:
int root;
std::vector<Node> tree;
};
} // namespace ebi
#line 8 "test/yuki/yuki_1720.test.cpp"
namespace ebi {
using mint = modint998244353;
void main_() {
int n, k;
std::cin >> n >> k;
std::vector<int> p(n);
std::cin >> p;
rep(i, 0, n) p[i]--;
Binomial<mint> binom(n);
common_interval_decomposition_tree permutation_tree(p);
auto dfs = [&](auto &&self, int v) -> std::vector<mint> {
auto node = permutation_tree.get_node(v);
if (node.is_leaf()) {
std::vector<mint> ret(k + 1, 0);
ret[1] = 1;
return ret;
}
std::vector<mint> ret(k + 1, 0), prev(k + 1, 0), sum(k + 1, 0);
ret[0] = 1;
prev[0] = 1;
for (auto ch : node.child) {
ret = convolution_naive(ret, self(self, ch));
ret.resize(k + 1);
if (node.is_linear()) {
rep(i, 0, k) {
ret[i + 1] += sum[i];
}
}
rep(i,0,k) {
sum[i] += prev[i];
}
prev = ret;
}
ret.resize(k + 1);
if (node.is_prime()) ret[1]++;
return ret;
};
auto ans = dfs(dfs, permutation_tree.root_id());
ans.resize(k + 1);
rep(i, 1, k + 1) {
std::cout << ans[i] << '\n';
}
}
} // namespace ebi
int main() {
ebi::fast_io();
int t = 1;
// std::cin >> t;
while (t--) {
ebi::main_();
}
return 0;
}