This documentation is automatically generated by online-judge-tools/verification-helper
#define PROBLEM \
"https://judge.yosupo.jp/problem/common_interval_decomposition_tree"
#include "../../tree/common_interval_decomposition_tree.hpp"
#include "../../template/template.hpp"
namespace ebi {
void main_() {
int n;
std::cin >> n;
std::vector<int> p(n);
std::cin >> p;
common_interval_decomposition_tree permutation_tree(p);
auto tree = permutation_tree.get_tree();
std::cout << tree.size() << '\n';
for (auto node : tree) {
std::cout << node.parent << " " << node.l << " " << node.r - 1 << " "
<< (node.type == common_interval_decomposition_tree::Prime
? "prime"
: "linear")
<< '\n';
}
}
} // namespace ebi
int main() {
ebi::fast_io();
int t = 1;
// std::cin >> t;
while (t--) {
ebi::main_();
}
return 0;
}
#line 1 "test/tree/Common_Interval_Decomposition_Tree.test.cpp"
#define PROBLEM \
"https://judge.yosupo.jp/problem/common_interval_decomposition_tree"
#line 2 "tree/common_interval_decomposition_tree.hpp"
#include <cassert>
#include <cstdint>
#include <numeric>
#include <vector>
#line 2 "data_structure/sparse_table.hpp"
#line 4 "data_structure/sparse_table.hpp"
/*
reference: https://scrapbox.io/data-structures/Sparse_Table
*/
namespace ebi {
template <class Band, Band (*op)(Band, Band)> struct sparse_table {
public:
sparse_table() = default;
sparse_table(const std::vector<Band> &a) : n(a.size()) {
table = std::vector(std::__lg(n) + 1, std::vector<Band>(n));
for (int i = 0; i < n; i++) {
table[0][i] = a[i];
}
for (int k = 1; (1 << k) <= n; k++) {
for (int i = 0; i + (1 << k) <= n; i++) {
table[k][i] =
op(table[k - 1][i], table[k - 1][i + (1 << (k - 1))]);
}
}
}
void build(const std::vector<Band> &a) {
n = (int)a.size();
table = std::vector(std::__lg(n) + 1, std::vector<Band>(n));
for (int i = 0; i < n; i++) {
table[0][i] = a[i];
}
for (int k = 1; (1 << k) <= n; k++) {
for (int i = 0; i + (1 << k) <= n; i++) {
table[k][i] =
op(table[k - 1][i], table[k - 1][i + (1 << (k - 1))]);
}
}
}
// [l, r)
Band fold(int l, int r) {
int k = std::__lg(r - l);
return op(table[k][l], table[k][r - (1 << k)]);
}
private:
int n;
std::vector<std::vector<Band>> table;
};
} // namespace ebi
#line 9 "tree/common_interval_decomposition_tree.hpp"
/*
reference: https://www.mathenachia.blog/permutation-tree/
*/
namespace ebi {
struct common_interval_decomposition_tree {
public:
enum NodeType {
Prime,
Inc,
Dec,
One,
};
struct Node {
int parent;
NodeType type;
int l, r;
std::vector<int> child;
bool is_prime() const {
return type == Prime;
}
bool is_linear() const {
return type != Prime;
}
bool is_leaf() const {
return type == One;
}
};
private:
static int op(int a, int b) {
return a < b ? a : b;
}
void build(const std::vector<int> &p) {
int n = (int)p.size();
std::vector<int> q(n, -1);
for (int i = 0; i < n; i++) {
assert(0 <= p[i] && p[i] < n && q[p[i]] == -1);
q[p[i]] = i;
}
sparse_table<int, op> static_range_min(q);
struct LeftBase {
int l;
int vl, vr;
};
struct Common {
int l, r, v;
};
std::vector<LeftBase> stack;
std::vector<Common> commons;
for (int r = 1; r <= n; r++) {
int a = p[r - 1];
LeftBase y = {r - 1, a, a + 1};
while (!stack.empty()) {
if (y.vl < stack.back().vl) stack.back().vl = y.vl;
if (y.vr > stack.back().vr) stack.back().vr = y.vr;
auto x = stack.back();
if (static_range_min.fold(x.vl, x.vr) < x.l) {
stack.pop_back();
auto &new_x = stack.back();
if (x.vl < new_x.vl) new_x.vl = x.vl;
if (x.vr > new_x.vr) new_x.vr = x.vr;
} else if (x.vr - x.vl == r - x.l) {
y = x;
stack.pop_back();
commons.emplace_back(x.l, r, x.vl);
} else {
break;
}
}
stack.push_back(y);
}
while (stack.size() >= 2) {
auto x = stack.back();
stack.pop_back();
auto &new_x = stack.back();
if (x.vl < new_x.vl) new_x.vl = x.vl;
if (x.vr > new_x.vr) new_x.vr = x.vr;
if (new_x.vr - new_x.vl == n - new_x.l) {
commons.emplace_back(new_x.l, n, new_x.vl);
}
}
assert(stack.size() == 1);
for (int i = 0; i < n; i++) tree.emplace_back(-1, One, i, i + 1);
std::vector<int> id(n);
std::iota(id.begin(), id.end(), 0);
std::vector<int> right_list(n);
std::iota(right_list.begin(), right_list.end(), 1);
for (auto common : commons) {
int m = right_list[common.l];
if (right_list[m] == common.r) {
int a = id[common.l];
int b = id[m];
right_list[common.l] = common.r;
auto t = p[common.l] < p[common.r - 1] ? Inc : Dec;
if (tree[a].type == t) {
tree[b].parent = a;
tree[a].r = common.r;
tree[a].child.push_back(b);
} else {
int c = (int)tree.size();
tree.emplace_back(-1, t, common.l, common.r,
std::vector<int>{a, b});
tree[a].parent = c;
tree[b].parent = c;
id[common.l] = c;
}
} else {
int c = (int)tree.size();
tree.emplace_back(-1, Prime, common.l, common.r);
for (int i = common.l; i < common.r; i = right_list[i]) {
tree[id[i]].parent = c;
tree.back().child.push_back(id[i]);
}
id[common.l] = c;
right_list[common.l] = common.r;
}
}
root = id[0];
}
public:
common_interval_decomposition_tree(const std::vector<int> &p) {
build(p);
}
std::vector<Node> get_tree() const {
return tree;
}
int root_id() const {
return root;
}
Node get_node(int i) const {
assert(0 <= i && i < (int)tree.size());
return tree[i];
}
std::int64_t count_connected_interval() const {
std::int64_t count = 0;
for (const auto &node : tree) {
if (node.type == Inc || node.type == Dec) {
std::int64_t len = (int)node.child.size();
count += len * (len - 1) / 2;
} else {
count++;
}
}
return count;
}
private:
int root;
std::vector<Node> tree;
};
} // namespace ebi
#line 5 "test/tree/Common_Interval_Decomposition_Tree.test.cpp"
#line 1 "template/template.hpp"
#include <bits/stdc++.h>
#define rep(i, a, n) for (int i = (int)(a); i < (int)(n); i++)
#define rrep(i, a, n) for (int i = ((int)(n)-1); i >= (int)(a); i--)
#define Rep(i, a, n) for (i64 i = (i64)(a); i < (i64)(n); i++)
#define RRep(i, a, n) for (i64 i = ((i64)(n)-i64(1)); i >= (i64)(a); i--)
#define all(v) (v).begin(), (v).end()
#define rall(v) (v).rbegin(), (v).rend()
#line 2 "template/debug_template.hpp"
#line 4 "template/debug_template.hpp"
namespace ebi {
#ifdef LOCAL
#define debug(...) \
std::cerr << "LINE: " << __LINE__ << " [" << #__VA_ARGS__ << "]:", \
debug_out(__VA_ARGS__)
#else
#define debug(...)
#endif
void debug_out() {
std::cerr << std::endl;
}
template <typename Head, typename... Tail> void debug_out(Head h, Tail... t) {
std::cerr << " " << h;
if (sizeof...(t) > 0) std::cerr << " :";
debug_out(t...);
}
} // namespace ebi
#line 2 "template/int_alias.hpp"
#line 4 "template/int_alias.hpp"
namespace ebi {
using ld = long double;
using std::size_t;
using i8 = std::int8_t;
using u8 = std::uint8_t;
using i16 = std::int16_t;
using u16 = std::uint16_t;
using i32 = std::int32_t;
using u32 = std::uint32_t;
using i64 = std::int64_t;
using u64 = std::uint64_t;
using i128 = __int128_t;
using u128 = __uint128_t;
} // namespace ebi
#line 2 "template/io.hpp"
#line 5 "template/io.hpp"
#include <optional>
#line 7 "template/io.hpp"
namespace ebi {
template <typename T1, typename T2>
std::ostream &operator<<(std::ostream &os, const std::pair<T1, T2> &pa) {
return os << pa.first << " " << pa.second;
}
template <typename T1, typename T2>
std::istream &operator>>(std::istream &os, std::pair<T1, T2> &pa) {
return os >> pa.first >> pa.second;
}
template <typename T>
std::ostream &operator<<(std::ostream &os, const std::vector<T> &vec) {
for (std::size_t i = 0; i < vec.size(); i++)
os << vec[i] << (i + 1 == vec.size() ? "" : " ");
return os;
}
template <typename T>
std::istream &operator>>(std::istream &os, std::vector<T> &vec) {
for (T &e : vec) std::cin >> e;
return os;
}
template <typename T>
std::ostream &operator<<(std::ostream &os, const std::optional<T> &opt) {
if (opt) {
os << opt.value();
} else {
os << "invalid value";
}
return os;
}
void fast_io() {
std::cout << std::fixed << std::setprecision(15);
std::cin.tie(nullptr);
std::ios::sync_with_stdio(false);
}
} // namespace ebi
#line 2 "template/utility.hpp"
#line 5 "template/utility.hpp"
#line 2 "graph/base.hpp"
#line 5 "graph/base.hpp"
#include <ranges>
#line 7 "graph/base.hpp"
#line 2 "data_structure/simple_csr.hpp"
#line 6 "data_structure/simple_csr.hpp"
namespace ebi {
template <class E> struct simple_csr {
simple_csr() = default;
simple_csr(int n, const std::vector<std::pair<int, E>>& elements)
: start(n + 1, 0), elist(elements.size()) {
for (auto e : elements) {
start[e.first + 1]++;
}
for (auto i : std::views::iota(0, n)) {
start[i + 1] += start[i];
}
auto counter = start;
for (auto [i, e] : elements) {
elist[counter[i]++] = e;
}
}
simple_csr(const std::vector<std::vector<E>>& es)
: start(es.size() + 1, 0) {
int n = es.size();
for (auto i : std::views::iota(0, n)) {
start[i + 1] = (int)es[i].size() + start[i];
}
elist.resize(start.back());
for (auto i : std::views::iota(0, n)) {
std::copy(es[i].begin(), es[i].end(), elist.begin() + start[i]);
}
}
int size() const {
return (int)start.size() - 1;
}
const auto operator[](int i) const {
return std::ranges::subrange(elist.begin() + start[i],
elist.begin() + start[i + 1]);
}
auto operator[](int i) {
return std::ranges::subrange(elist.begin() + start[i],
elist.begin() + start[i + 1]);
}
const auto operator()(int i, int l, int r) const {
return std::ranges::subrange(elist.begin() + start[i] + l,
elist.begin() + start[i + 1] + r);
}
auto operator()(int i, int l, int r) {
return std::ranges::subrange(elist.begin() + start[i] + l,
elist.begin() + start[i + 1] + r);
}
private:
std::vector<int> start;
std::vector<E> elist;
};
} // namespace ebi
#line 9 "graph/base.hpp"
namespace ebi {
template <class T> struct Edge {
int from, to;
T cost;
int id;
};
template <class E> struct Graph {
using cost_type = E;
using edge_type = Edge<cost_type>;
Graph(int n_) : n(n_) {}
Graph() = default;
void add_edge(int u, int v, cost_type c) {
assert(!prepared && u < n && v < n);
buff.emplace_back(u, edge_type{u, v, c, m});
edges.emplace_back(edge_type{u, v, c, m++});
}
void add_undirected_edge(int u, int v, cost_type c) {
assert(!prepared && u < n && v < n);
buff.emplace_back(u, edge_type{u, v, c, m});
buff.emplace_back(v, edge_type{v, u, c, m});
edges.emplace_back(edge_type{u, v, c, m});
m++;
}
void read_tree(int offset = 1, bool is_weighted = false) {
read_graph(n - 1, offset, false, is_weighted);
}
void read_parents(int offset = 1) {
for (auto i : std::views::iota(1, n)) {
int p;
std::cin >> p;
p -= offset;
add_undirected_edge(p, i, 1);
}
build();
}
void read_graph(int e, int offset = 1, bool is_directed = false,
bool is_weighted = false) {
for (int i = 0; i < e; i++) {
int u, v;
std::cin >> u >> v;
u -= offset;
v -= offset;
if (is_weighted) {
cost_type c;
std::cin >> c;
if (is_directed) {
add_edge(u, v, c);
} else {
add_undirected_edge(u, v, c);
}
} else {
if (is_directed) {
add_edge(u, v, 1);
} else {
add_undirected_edge(u, v, 1);
}
}
}
build();
}
void build() {
assert(!prepared);
csr = simple_csr<edge_type>(n, buff);
buff.clear();
prepared = true;
}
int size() const {
return n;
}
int node_number() const {
return n;
}
int edge_number() const {
return m;
}
edge_type get_edge(int i) const {
assert(prepared);
return edges[i];
}
std::vector<edge_type> get_edges() const {
assert(prepared);
return edges;
}
const auto operator[](int i) const {
assert(prepared);
return csr[i];
}
auto operator[](int i) {
assert(prepared);
return csr[i];
}
private:
int n, m = 0;
std::vector<std::pair<int, edge_type>> buff;
std::vector<edge_type> edges;
simple_csr<edge_type> csr;
bool prepared = false;
};
} // namespace ebi
#line 8 "template/utility.hpp"
namespace ebi {
template <class T> inline bool chmin(T &a, T b) {
if (a > b) {
a = b;
return true;
}
return false;
}
template <class T> inline bool chmax(T &a, T b) {
if (a < b) {
a = b;
return true;
}
return false;
}
template <class T> T safe_ceil(T a, T b) {
if (a % b == 0)
return a / b;
else if (a >= 0)
return (a / b) + 1;
else
return -((-a) / b);
}
template <class T> T safe_floor(T a, T b) {
if (a % b == 0)
return a / b;
else if (a >= 0)
return a / b;
else
return -((-a) / b) - 1;
}
constexpr i64 LNF = std::numeric_limits<i64>::max() / 4;
constexpr int INF = std::numeric_limits<int>::max() / 2;
const std::vector<int> dy = {1, 0, -1, 0, 1, 1, -1, -1};
const std::vector<int> dx = {0, 1, 0, -1, 1, -1, 1, -1};
} // namespace ebi
#line 7 "test/tree/Common_Interval_Decomposition_Tree.test.cpp"
namespace ebi {
void main_() {
int n;
std::cin >> n;
std::vector<int> p(n);
std::cin >> p;
common_interval_decomposition_tree permutation_tree(p);
auto tree = permutation_tree.get_tree();
std::cout << tree.size() << '\n';
for (auto node : tree) {
std::cout << node.parent << " " << node.l << " " << node.r - 1 << " "
<< (node.type == common_interval_decomposition_tree::Prime
? "prime"
: "linear")
<< '\n';
}
}
} // namespace ebi
int main() {
ebi::fast_io();
int t = 1;
// std::cin >> t;
while (t--) {
ebi::main_();
}
return 0;
}