Library

This documentation is automatically generated by online-judge-tools/verification-helper

View the Project on GitHub ebi-fly13/Library

:heavy_check_mark: test/tree/Common_Interval_Decomposition_Tree.test.cpp

Depends on

Code

#define PROBLEM \
    "https://judge.yosupo.jp/problem/common_interval_decomposition_tree"

#include "../../tree/common_interval_decomposition_tree.hpp"

#include "../../template/template.hpp"

namespace ebi {

void main_() {
    int n;
    std::cin >> n;
    std::vector<int> p(n);
    std::cin >> p;
    common_interval_decomposition_tree permutation_tree(p);
    auto tree = permutation_tree.get_tree();
    std::cout << tree.size() << '\n';
    for (auto node : tree) {
        std::cout << node.parent << " " << node.l << " " << node.r - 1 << " "
                  << (node.type == common_interval_decomposition_tree::Prime
                          ? "prime"
                          : "linear")
                  << '\n';
    }
}

}  // namespace ebi

int main() {
    ebi::fast_io();
    int t = 1;
    // std::cin >> t;
    while (t--) {
        ebi::main_();
    }
    return 0;
}
#line 1 "test/tree/Common_Interval_Decomposition_Tree.test.cpp"
#define PROBLEM \
    "https://judge.yosupo.jp/problem/common_interval_decomposition_tree"

#line 2 "tree/common_interval_decomposition_tree.hpp"

#include <cassert>
#include <cstdint>
#include <numeric>
#include <vector>

#line 2 "data_structure/sparse_table.hpp"

#line 4 "data_structure/sparse_table.hpp"

/*
    reference: https://scrapbox.io/data-structures/Sparse_Table
*/

namespace ebi {

template <class Band, Band (*op)(Band, Band)> struct sparse_table {
  public:
    sparse_table() = default;

    sparse_table(const std::vector<Band> &a) : n(a.size()) {
        table = std::vector(std::__lg(n) + 1, std::vector<Band>(n));
        for (int i = 0; i < n; i++) {
            table[0][i] = a[i];
        }
        for (int k = 1; (1 << k) <= n; k++) {
            for (int i = 0; i + (1 << k) <= n; i++) {
                table[k][i] =
                    op(table[k - 1][i], table[k - 1][i + (1 << (k - 1))]);
            }
        }
    }

    void build(const std::vector<Band> &a) {
        n = (int)a.size();
        table = std::vector(std::__lg(n) + 1, std::vector<Band>(n));
        for (int i = 0; i < n; i++) {
            table[0][i] = a[i];
        }
        for (int k = 1; (1 << k) <= n; k++) {
            for (int i = 0; i + (1 << k) <= n; i++) {
                table[k][i] =
                    op(table[k - 1][i], table[k - 1][i + (1 << (k - 1))]);
            }
        }
    }

    // [l, r)

    Band fold(int l, int r) {
        int k = std::__lg(r - l);
        return op(table[k][l], table[k][r - (1 << k)]);
    }

  private:
    int n;
    std::vector<std::vector<Band>> table;
};

}  // namespace ebi
#line 9 "tree/common_interval_decomposition_tree.hpp"

/*
reference: https://www.mathenachia.blog/permutation-tree/
*/

namespace ebi {

struct common_interval_decomposition_tree {
  public:
    enum NodeType {
        Prime,
        Inc,
        Dec,
        One,
    };

    struct Node {
        int parent;
        NodeType type;
        int l, r;
        std::vector<int> child;

        bool is_prime() const {
            return type == Prime;
        }

        bool is_linear() const {
            return type != Prime;
        }

        bool is_leaf() const {
            return type == One;
        }
    };

  private:
    static int op(int a, int b) {
        return a < b ? a : b;
    }

    void build(const std::vector<int> &p) {
        int n = (int)p.size();
        std::vector<int> q(n, -1);
        for (int i = 0; i < n; i++) {
            assert(0 <= p[i] && p[i] < n && q[p[i]] == -1);
            q[p[i]] = i;
        }
        sparse_table<int, op> static_range_min(q);
        struct LeftBase {
            int l;
            int vl, vr;
        };
        struct Common {
            int l, r, v;
        };
        std::vector<LeftBase> stack;
        std::vector<Common> commons;
        for (int r = 1; r <= n; r++) {
            int a = p[r - 1];
            LeftBase y = {r - 1, a, a + 1};
            while (!stack.empty()) {
                if (y.vl < stack.back().vl) stack.back().vl = y.vl;
                if (y.vr > stack.back().vr) stack.back().vr = y.vr;
                auto x = stack.back();
                if (static_range_min.fold(x.vl, x.vr) < x.l) {
                    stack.pop_back();
                    auto &new_x = stack.back();
                    if (x.vl < new_x.vl) new_x.vl = x.vl;
                    if (x.vr > new_x.vr) new_x.vr = x.vr;
                } else if (x.vr - x.vl == r - x.l) {
                    y = x;
                    stack.pop_back();
                    commons.emplace_back(x.l, r, x.vl);
                } else {
                    break;
                }
            }
            stack.push_back(y);
        }
        while (stack.size() >= 2) {
            auto x = stack.back();
            stack.pop_back();
            auto &new_x = stack.back();
            if (x.vl < new_x.vl) new_x.vl = x.vl;
            if (x.vr > new_x.vr) new_x.vr = x.vr;
            if (new_x.vr - new_x.vl == n - new_x.l) {
                commons.emplace_back(new_x.l, n, new_x.vl);
            }
        }
        assert(stack.size() == 1);
        for (int i = 0; i < n; i++) tree.emplace_back(-1, One, i, i + 1);
        std::vector<int> id(n);
        std::iota(id.begin(), id.end(), 0);
        std::vector<int> right_list(n);
        std::iota(right_list.begin(), right_list.end(), 1);
        for (auto common : commons) {
            int m = right_list[common.l];
            if (right_list[m] == common.r) {
                int a = id[common.l];
                int b = id[m];
                right_list[common.l] = common.r;
                auto t = p[common.l] < p[common.r - 1] ? Inc : Dec;
                if (tree[a].type == t) {
                    tree[b].parent = a;
                    tree[a].r = common.r;
                    tree[a].child.push_back(b);
                } else {
                    int c = (int)tree.size();
                    tree.emplace_back(-1, t, common.l, common.r,
                                      std::vector<int>{a, b});
                    tree[a].parent = c;
                    tree[b].parent = c;
                    id[common.l] = c;
                }
            } else {
                int c = (int)tree.size();
                tree.emplace_back(-1, Prime, common.l, common.r);
                for (int i = common.l; i < common.r; i = right_list[i]) {
                    tree[id[i]].parent = c;
                    tree.back().child.push_back(id[i]);
                }
                id[common.l] = c;
                right_list[common.l] = common.r;
            }
        }
        root = id[0];
    }

  public:
    common_interval_decomposition_tree(const std::vector<int> &p) {
        build(p);
    }

    std::vector<Node> get_tree() const {
        return tree;
    }

    int root_id() const {
        return root;
    }

    Node get_node(int i) const {
        assert(0 <= i && i < (int)tree.size());
        return tree[i];
    }

    std::int64_t count_connected_interval() const {
        std::int64_t count = 0;
        for (const auto &node : tree) {
            if (node.type == Inc || node.type == Dec) {
                std::int64_t len = (int)node.child.size();
                count += len * (len - 1) / 2;
            } else {
                count++;
            }
        }
        return count;
    }

  private:
    int root;
    std::vector<Node> tree;
};

}  // namespace ebi
#line 5 "test/tree/Common_Interval_Decomposition_Tree.test.cpp"

#line 1 "template/template.hpp"
#include <bits/stdc++.h>

#define rep(i, a, n) for (int i = (int)(a); i < (int)(n); i++)
#define rrep(i, a, n) for (int i = ((int)(n)-1); i >= (int)(a); i--)
#define Rep(i, a, n) for (i64 i = (i64)(a); i < (i64)(n); i++)
#define RRep(i, a, n) for (i64 i = ((i64)(n)-i64(1)); i >= (i64)(a); i--)
#define all(v) (v).begin(), (v).end()
#define rall(v) (v).rbegin(), (v).rend()

#line 2 "template/debug_template.hpp"

#line 4 "template/debug_template.hpp"

namespace ebi {

#ifdef LOCAL
#define debug(...)                                                      \
    std::cerr << "LINE: " << __LINE__ << "  [" << #__VA_ARGS__ << "]:", \
        debug_out(__VA_ARGS__)
#else
#define debug(...)
#endif

void debug_out() {
    std::cerr << std::endl;
}

template <typename Head, typename... Tail> void debug_out(Head h, Tail... t) {
    std::cerr << " " << h;
    if (sizeof...(t) > 0) std::cerr << " :";
    debug_out(t...);
}

}  // namespace ebi
#line 2 "template/int_alias.hpp"

#line 4 "template/int_alias.hpp"

namespace ebi {

using ld = long double;
using std::size_t;
using i8 = std::int8_t;
using u8 = std::uint8_t;
using i16 = std::int16_t;
using u16 = std::uint16_t;
using i32 = std::int32_t;
using u32 = std::uint32_t;
using i64 = std::int64_t;
using u64 = std::uint64_t;
using i128 = __int128_t;
using u128 = __uint128_t;

}  // namespace ebi
#line 2 "template/io.hpp"

#line 5 "template/io.hpp"
#include <optional>
#line 7 "template/io.hpp"

namespace ebi {

template <typename T1, typename T2>
std::ostream &operator<<(std::ostream &os, const std::pair<T1, T2> &pa) {
    return os << pa.first << " " << pa.second;
}

template <typename T1, typename T2>
std::istream &operator>>(std::istream &os, std::pair<T1, T2> &pa) {
    return os >> pa.first >> pa.second;
}

template <typename T>
std::ostream &operator<<(std::ostream &os, const std::vector<T> &vec) {
    for (std::size_t i = 0; i < vec.size(); i++)
        os << vec[i] << (i + 1 == vec.size() ? "" : " ");
    return os;
}

template <typename T>
std::istream &operator>>(std::istream &os, std::vector<T> &vec) {
    for (T &e : vec) std::cin >> e;
    return os;
}

template <typename T>
std::ostream &operator<<(std::ostream &os, const std::optional<T> &opt) {
    if (opt) {
        os << opt.value();
    } else {
        os << "invalid value";
    }
    return os;
}

void fast_io() {
    std::cout << std::fixed << std::setprecision(15);
    std::cin.tie(nullptr);
    std::ios::sync_with_stdio(false);
}

}  // namespace ebi
#line 2 "template/utility.hpp"

#line 5 "template/utility.hpp"

#line 2 "graph/base.hpp"

#line 5 "graph/base.hpp"
#include <ranges>
#line 7 "graph/base.hpp"

#line 2 "data_structure/simple_csr.hpp"

#line 6 "data_structure/simple_csr.hpp"

namespace ebi {

template <class E> struct simple_csr {
    simple_csr() = default;

    simple_csr(int n, const std::vector<std::pair<int, E>>& elements)
        : start(n + 1, 0), elist(elements.size()) {
        for (auto e : elements) {
            start[e.first + 1]++;
        }
        for (auto i : std::views::iota(0, n)) {
            start[i + 1] += start[i];
        }
        auto counter = start;
        for (auto [i, e] : elements) {
            elist[counter[i]++] = e;
        }
    }

    simple_csr(const std::vector<std::vector<E>>& es)
        : start(es.size() + 1, 0) {
        int n = es.size();
        for (auto i : std::views::iota(0, n)) {
            start[i + 1] = (int)es[i].size() + start[i];
        }
        elist.resize(start.back());
        for (auto i : std::views::iota(0, n)) {
            std::copy(es[i].begin(), es[i].end(), elist.begin() + start[i]);
        }
    }

    int size() const {
        return (int)start.size() - 1;
    }

    const auto operator[](int i) const {
        return std::ranges::subrange(elist.begin() + start[i],
                                     elist.begin() + start[i + 1]);
    }
    auto operator[](int i) {
        return std::ranges::subrange(elist.begin() + start[i],
                                     elist.begin() + start[i + 1]);
    }

    const auto operator()(int i, int l, int r) const {
        return std::ranges::subrange(elist.begin() + start[i] + l,
                                     elist.begin() + start[i + 1] + r);
    }
    auto operator()(int i, int l, int r) {
        return std::ranges::subrange(elist.begin() + start[i] + l,
                                     elist.begin() + start[i + 1] + r);
    }

  private:
    std::vector<int> start;
    std::vector<E> elist;
};

}  // namespace ebi
#line 9 "graph/base.hpp"

namespace ebi {

template <class T> struct Edge {
    int from, to;
    T cost;
    int id;
};

template <class E> struct Graph {
    using cost_type = E;
    using edge_type = Edge<cost_type>;

    Graph(int n_) : n(n_) {}

    Graph() = default;

    void add_edge(int u, int v, cost_type c) {
        assert(!prepared && u < n && v < n);
        buff.emplace_back(u, edge_type{u, v, c, m});
        edges.emplace_back(edge_type{u, v, c, m++});
    }

    void add_undirected_edge(int u, int v, cost_type c) {
        assert(!prepared && u < n && v < n);
        buff.emplace_back(u, edge_type{u, v, c, m});
        buff.emplace_back(v, edge_type{v, u, c, m});
        edges.emplace_back(edge_type{u, v, c, m});
        m++;
    }

    void read_tree(int offset = 1, bool is_weighted = false) {
        read_graph(n - 1, offset, false, is_weighted);
    }

    void read_parents(int offset = 1) {
        for (auto i : std::views::iota(1, n)) {
            int p;
            std::cin >> p;
            p -= offset;
            add_undirected_edge(p, i, 1);
        }
        build();
    }

    void read_graph(int e, int offset = 1, bool is_directed = false,
                    bool is_weighted = false) {
        for (int i = 0; i < e; i++) {
            int u, v;
            std::cin >> u >> v;
            u -= offset;
            v -= offset;
            if (is_weighted) {
                cost_type c;
                std::cin >> c;
                if (is_directed) {
                    add_edge(u, v, c);
                } else {
                    add_undirected_edge(u, v, c);
                }
            } else {
                if (is_directed) {
                    add_edge(u, v, 1);
                } else {
                    add_undirected_edge(u, v, 1);
                }
            }
        }
        build();
    }

    void build() {
        assert(!prepared);
        csr = simple_csr<edge_type>(n, buff);
        buff.clear();
        prepared = true;
    }

    int size() const {
        return n;
    }

    int node_number() const {
        return n;
    }

    int edge_number() const {
        return m;
    }

    edge_type get_edge(int i) const {
        assert(prepared);
        return edges[i];
    }

    std::vector<edge_type> get_edges() const {
        assert(prepared);
        return edges;
    }

    const auto operator[](int i) const {
        assert(prepared);
        return csr[i];
    }
    auto operator[](int i) {
        assert(prepared);
        return csr[i];
    }

  private:
    int n, m = 0;

    std::vector<std::pair<int, edge_type>> buff;

    std::vector<edge_type> edges;
    simple_csr<edge_type> csr;
    bool prepared = false;
};

}  // namespace ebi
#line 8 "template/utility.hpp"

namespace ebi {

template <class T> inline bool chmin(T &a, T b) {
    if (a > b) {
        a = b;
        return true;
    }
    return false;
}

template <class T> inline bool chmax(T &a, T b) {
    if (a < b) {
        a = b;
        return true;
    }
    return false;
}

template <class T> T safe_ceil(T a, T b) {
    if (a % b == 0)
        return a / b;
    else if (a >= 0)
        return (a / b) + 1;
    else
        return -((-a) / b);
}

template <class T> T safe_floor(T a, T b) {
    if (a % b == 0)
        return a / b;
    else if (a >= 0)
        return a / b;
    else
        return -((-a) / b) - 1;
}

constexpr i64 LNF = std::numeric_limits<i64>::max() / 4;

constexpr int INF = std::numeric_limits<int>::max() / 2;

const std::vector<int> dy = {1, 0, -1, 0, 1, 1, -1, -1};
const std::vector<int> dx = {0, 1, 0, -1, 1, -1, 1, -1};

}  // namespace ebi
#line 7 "test/tree/Common_Interval_Decomposition_Tree.test.cpp"

namespace ebi {

void main_() {
    int n;
    std::cin >> n;
    std::vector<int> p(n);
    std::cin >> p;
    common_interval_decomposition_tree permutation_tree(p);
    auto tree = permutation_tree.get_tree();
    std::cout << tree.size() << '\n';
    for (auto node : tree) {
        std::cout << node.parent << " " << node.l << " " << node.r - 1 << " "
                  << (node.type == common_interval_decomposition_tree::Prime
                          ? "prime"
                          : "linear")
                  << '\n';
    }
}

}  // namespace ebi

int main() {
    ebi::fast_io();
    int t = 1;
    // std::cin >> t;
    while (t--) {
        ebi::main_();
    }
    return 0;
}
Back to top page