This documentation is automatically generated by online-judge-tools/verification-helper
#include "fps/fps_sqrt.hpp"
形式的べき級数 $f$ について $\sqrt{f}$ が存在するなら求める。存在しない場合は std::nullopt
を返す。
疎な場合は非負の要素数を $M$ として $O(NM)$。密な場合は $O(N\log N)$
#pragma once
#include "../fps/fps.hpp"
#include "../fps/fps_sparse.hpp"
#include "../math/mod_sqrt.hpp"
#include "../modint/base.hpp"
namespace ebi {
template <Modint mint>
std::optional<FormalPowerSeries<mint>> FormalPowerSeries<mint>::sqrt(
int d) const {
using FPS = FormalPowerSeries<mint>;
if (d < 0) d = deg();
if ((*this)[0] == 0) {
for (int i = 1; i < this->deg(); i++) {
if ((*this)[i] != 0) {
if (i & 1) return std::nullopt;
if (d - i / 2 <= 0) break;
auto opt = ((*this) >> i).sqrt(d - i / 2);
if (!opt) return std::nullopt;
auto ret = opt.value() << (i / 2);
if ((int)ret.deg() < d) ret.resize(d);
return ret;
}
}
return FPS(d, 0);
}
auto s = mod_sqrt((*this)[0].val(), mint::mod());
if (!s) {
return std::nullopt;
}
if (this->count_terms() <= 200) {
mint y = s.value();
std::vector<mint> sqrt_f =
pow_sparse_1(*this / (*this)[0], mint(2).inv().val(), d);
FPS g(d);
for (int i = 0; i < d; i++) g[i] = sqrt_f[i] * y;
return g;
}
int n = 1;
FPS g(n);
g[0] = s.value();
mint inv_two = mint(2).inv();
while (n < d) {
n <<= 1;
g = (g + this->pre(n) * g.inv(n)).pre(n) * inv_two;
}
g.resize(d);
return g;
}
} // namespace ebi
#line 2 "fps/fps_sqrt.hpp"
#line 2 "fps/fps.hpp"
#include <algorithm>
#include <cassert>
#include <optional>
#include <vector>
#line 2 "modint/base.hpp"
#include <concepts>
#include <iostream>
#include <utility>
namespace ebi {
template <class T>
concept Modint = requires(T a, T b) {
a + b;
a - b;
a * b;
a / b;
a.inv();
a.val();
a.pow(std::declval<long long>());
T::mod();
};
template <Modint mint> std::istream &operator>>(std::istream &os, mint &a) {
long long x;
os >> x;
a = x;
return os;
}
template <Modint mint>
std::ostream &operator<<(std::ostream &os, const mint &a) {
return os << a.val();
}
} // namespace ebi
#line 9 "fps/fps.hpp"
namespace ebi {
template <Modint mint> struct FormalPowerSeries : std::vector<mint> {
private:
using std::vector<mint>::vector;
using std::vector<mint>::vector::operator=;
using FPS = FormalPowerSeries;
public:
FormalPowerSeries(const std::vector<mint> &a) {
*this = a;
}
FPS operator+(const FPS &rhs) const noexcept {
return FPS(*this) += rhs;
}
FPS operator-(const FPS &rhs) const noexcept {
return FPS(*this) -= rhs;
}
FPS operator*(const FPS &rhs) const noexcept {
return FPS(*this) *= rhs;
}
FPS operator/(const FPS &rhs) const noexcept {
return FPS(*this) /= rhs;
}
FPS operator%(const FPS &rhs) const noexcept {
return FPS(*this) %= rhs;
}
FPS operator+(const mint &rhs) const noexcept {
return FPS(*this) += rhs;
}
FPS operator-(const mint &rhs) const noexcept {
return FPS(*this) -= rhs;
}
FPS operator*(const mint &rhs) const noexcept {
return FPS(*this) *= rhs;
}
FPS operator/(const mint &rhs) const noexcept {
return FPS(*this) /= rhs;
}
FPS &operator+=(const FPS &rhs) noexcept {
if (this->size() < rhs.size()) this->resize(rhs.size());
for (int i = 0; i < (int)rhs.size(); ++i) {
(*this)[i] += rhs[i];
}
return *this;
}
FPS &operator-=(const FPS &rhs) noexcept {
if (this->size() < rhs.size()) this->resize(rhs.size());
for (int i = 0; i < (int)rhs.size(); ++i) {
(*this)[i] -= rhs[i];
}
return *this;
}
FPS &operator*=(const FPS &);
FPS &operator/=(const FPS &rhs) noexcept {
int n = deg() - 1;
int m = rhs.deg() - 1;
if (n < m) {
*this = {};
return *this;
}
*this = (*this).rev() * rhs.rev().inv(n - m + 1);
(*this).resize(n - m + 1);
std::reverse((*this).begin(), (*this).end());
return *this;
}
FPS &operator%=(const FPS &rhs) noexcept {
*this -= *this / rhs * rhs;
shrink();
return *this;
}
FPS &operator+=(const mint &rhs) noexcept {
if (this->empty()) this->resize(1);
(*this)[0] += rhs;
return *this;
}
FPS &operator-=(const mint &rhs) noexcept {
if (this->empty()) this->resize(1);
(*this)[0] -= rhs;
return *this;
}
FPS &operator*=(const mint &rhs) noexcept {
for (int i = 0; i < deg(); ++i) {
(*this)[i] *= rhs;
}
return *this;
}
FPS &operator/=(const mint &rhs) noexcept {
mint inv_rhs = rhs.inv();
for (int i = 0; i < deg(); ++i) {
(*this)[i] *= inv_rhs;
}
return *this;
}
FPS operator>>(int d) const {
if (deg() <= d) return {};
FPS f = *this;
f.erase(f.begin(), f.begin() + d);
return f;
}
FPS operator<<(int d) const {
FPS f = *this;
f.insert(f.begin(), d, 0);
return f;
}
FPS operator-() const {
FPS g(this->size());
for (int i = 0; i < (int)this->size(); i++) g[i] = -(*this)[i];
return g;
}
FPS pre(int sz) const {
return FPS(this->begin(), this->begin() + std::min(deg(), sz));
}
FPS rev() const {
auto f = *this;
std::reverse(f.begin(), f.end());
return f;
}
FPS differential() const {
int n = deg();
FPS g(std::max(0, n - 1));
for (int i = 0; i < n - 1; i++) {
g[i] = (*this)[i + 1] * (i + 1);
}
return g;
}
FPS integral() const {
int n = deg();
FPS g(n + 1);
g[0] = 0;
if (n > 0) g[1] = 1;
auto mod = mint::mod();
for (int i = 2; i <= n; i++) g[i] = (-g[mod % i]) * (mod / i);
for (int i = 0; i < n; i++) g[i + 1] *= (*this)[i];
return g;
}
FPS inv(int d = -1) const {
int n = 1;
if (d < 0) d = deg();
FPS g(n);
g[0] = (*this)[0].inv();
while (n < d) {
n <<= 1;
g = (g * 2 - g * g * this->pre(n)).pre(n);
}
g.resize(d);
return g;
}
FPS log(int d = -1) const {
assert((*this)[0].val() == 1);
if (d < 0) d = deg();
return ((*this).differential() * (*this).inv(d)).pre(d - 1).integral();
}
FPS exp(int d = -1) const {
assert((*this)[0].val() == 0);
int n = 1;
if (d < 0) d = deg();
FPS g(n);
g[0] = 1;
while (n < d) {
n <<= 1;
g = (g * (this->pre(n) - g.log(n) + 1)).pre(n);
}
g.resize(d);
return g;
}
FPS pow(long long k, int d = -1) const {
assert(k >= 0);
int n = deg();
if (d < 0) d = n;
if (k == 0) {
FPS f(d);
if (d > 0) f[0] = 1;
return f;
}
int low = d;
for (int i = n - 1; i >= 0; i--)
if ((*this)[i] != 0) low = i;
if (low >= (d + k - 1) / k) return FPS(d, 0);
int offset = k * low;
mint c = (*this)[low];
FPS g(d - offset);
for (int i = 0; i < std::min(n - low, d - offset); i++) {
g[i] = (*this)[i + low];
}
g /= c;
g = g.pow_1(k);
return (g << offset) * c.pow(k);
}
FPS pow_1(mint k, int d = -1) const {
assert((*this)[0] == 1);
return ((*this).log(d) * k).exp(d);
}
FPS pow_newton(long long k, int d = -1) const {
assert(k >= 0);
const int n = deg();
if (d < 0) d = n;
if (k == 0) {
FPS f(d);
if (d > 0) f[0] = 1;
return f;
}
for (int i = 0; i < n; i++) {
if ((*this)[i] != 0) {
mint rev = (*this)[i].inv();
FPS f = (((*this * rev) >> i).log(d) * k).exp(d);
f *= (*this)[i].pow(k);
f = (f << (i * k)).pre(d);
if (f.deg() < d) f.resize(d);
return f;
}
if (i + 1 >= (d + k - 1) / k) break;
}
return FPS(d);
}
int deg() const {
return (*this).size();
}
void shrink() {
while ((!this->empty()) && this->back() == 0) this->pop_back();
}
int count_terms() const {
int c = 0;
for (int i = 0; i < deg(); i++) {
if ((*this)[i] != 0) c++;
}
return c;
}
std::optional<FPS> sqrt(int d = -1) const;
static FPS exp_x(int n) {
FPS f(n);
mint fact = 1;
for (int i = 1; i < n; i++) fact *= i;
f[n - 1] = fact.inv();
for (int i = n - 1; i >= 0; i--) f[i - 1] = f[i] * i;
return f;
}
void fft();
void ifft();
};
} // namespace ebi
#line 2 "fps/fps_sparse.hpp"
#line 5 "fps/fps_sparse.hpp"
#line 2 "math/mod_inv.hpp"
#line 5 "math/mod_inv.hpp"
#line 7 "math/mod_inv.hpp"
namespace ebi {
template <Modint mint> mint inv(int n) {
static const int mod = mint::mod();
static std::vector<mint> dat = {0, 1};
assert(0 <= n);
if (n >= mod) n -= mod;
while (int(dat.size()) <= n) {
int num = dat.size();
int q = (mod + num - 1) / num;
dat.emplace_back(dat[num * q - mod] * mint(q));
}
return dat[n];
}
} // namespace ebi
#line 8 "fps/fps_sparse.hpp"
namespace ebi {
template <Modint mint>
std::vector<mint> mul_sparse(const std::vector<mint> &f,
const std::vector<mint> &g) {
int n = f.size();
int m = g.size();
std::vector<std::pair<int, mint>> cf, cg;
for (int i = 0; i < n; i++) {
if (f[i] != 0) cf.emplace_back(i, f[i]);
}
for (int i = 0; i < m; i++) {
if (g[i] != 0) cg.emplace_back(i, g[i]);
}
std::vector<mint> h(n + m - 1);
for (auto [i, p] : cf) {
for (auto [j, q] : cg) {
h[i + j] += p * q;
}
}
return h;
}
template <Modint mint>
std::vector<mint> inv_sparse(const std::vector<mint> &f, int d = -1) {
assert(f[0] != 0);
if (d < 0) {
d = f.size();
}
std::vector<std::pair<int, mint>> ret;
for (int i = 1; i < int(f.size()); i++) {
if (f[i] != 0) {
ret.emplace_back(i, f[i]);
}
}
std::vector<mint> g(d);
g[0] = f[0].inv();
for (int i = 1; i < d; i++) {
for (auto [k, p] : ret) {
if (i - k < 0) break;
g[i] -= g[i - k] * p;
}
g[i] *= g[0];
}
return g;
}
template <Modint mint>
std::vector<mint> exp_sparse(const std::vector<mint> &f, int d = -1) {
int n = f.size();
if (d < 0) d = n;
std::vector<std::pair<int, mint>> ret;
for (int i = 1; i < n; i++) {
if (f[i] != 0) {
ret.emplace_back(i - 1, f[i] * i);
}
}
std::vector<mint> g(d);
g[0] = 1;
for (int i = 0; i < d - 1; i++) {
for (auto [k, p] : ret) {
if (i - k < 0) break;
g[i + 1] += g[i - k] * p;
}
g[i + 1] *= inv<mint>(i + 1);
}
return g;
}
template <Modint mint>
std::vector<mint> log_sparse(const std::vector<mint> &f, int d = -1) {
int n = f.size();
if (d < 0) d = n;
std::vector<mint> df(d);
for (int i = 0; i < std::min(d, n - 1); i++) {
df[i] = f[i + 1] * (i + 1);
}
auto dg = mul_sparse(df, inv_sparse(f));
dg.resize(d);
std::vector<mint> g(d);
for (int i = 0; i < d - 1; i++) {
g[i + 1] = dg[i] * inv<mint>(i + 1);
}
return g;
}
template <Modint mint>
std::vector<mint> pow_sparse_1(const std::vector<mint> &f, long long k,
int d = -1) {
int n = f.size();
assert(n == 0 || f[0] == 1);
std::vector<std::pair<int, mint>> ret;
for (int i = 1; i < n; i++) {
if (f[i] != 0) ret.emplace_back(i, f[i]);
}
std::vector<mint> g(d);
g[0] = 1;
for (int i = 0; i < d - 1; i++) {
for (const auto &[j, cf] : ret) {
if (i + 1 - j < 0) break;
g[i + 1] +=
(mint(k) * mint(j) - mint(i - j + 1)) * cf * g[i + 1 - j];
}
g[i + 1] *= inv<mint>(i + 1);
}
return g;
}
template <Modint mint>
std::vector<mint> pow_sparse(const std::vector<mint> &f, long long k,
int d = -1) {
int n = f.size();
if (d < 0) d = n;
assert(k >= 0);
if (k == 0) {
std::vector<mint> g(d);
if (d > 0) g[0] = 1;
return g;
}
for (int i = 0; i < n; i++) {
if (f[i] != 0) {
mint rev = f[i].inv();
std::vector<mint> f2(n - i);
for (int j = i; j < n; j++) {
f2[j - i] = f[j] * rev;
}
f2 = pow_sparse_1(f2, k, d);
mint fk = f[i].pow(k);
std::vector<mint> g(d);
for (int j = 0; j < int(f2.size()); j++) {
if (j + i * k >= d) break;
g[j + i * k] = f2[j] * fk;
}
return g;
}
if (i >= (d + k - 1) / k) break;
}
return std::vector<mint>(d);
}
} // namespace ebi
#line 2 "math/mod_sqrt.hpp"
#include <cstdint>
#line 5 "math/mod_sqrt.hpp"
#line 2 "modint/dynamic_modint.hpp"
#line 4 "modint/dynamic_modint.hpp"
#line 6 "modint/dynamic_modint.hpp"
namespace ebi {
template <int id> struct dynamic_modint {
private:
using modint = dynamic_modint;
public:
static void set_mod(int p) {
assert(1 <= p);
m = p;
}
static int mod() {
return m;
}
modint raw(int v) {
modint x;
x._v = v;
return x;
}
dynamic_modint() : _v(0) {}
dynamic_modint(long long v) {
v %= (long long)umod();
if (v < 0) v += (long long)umod();
_v = (unsigned int)v;
}
unsigned int val() const {
return _v;
}
unsigned int value() const {
return val();
}
modint &operator++() {
_v++;
if (_v == umod()) _v = 0;
return *this;
}
modint &operator--() {
if (_v == 0) _v = umod();
_v--;
return *this;
}
modint &operator+=(const modint &rhs) {
_v += rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
modint &operator-=(const modint &rhs) {
_v -= rhs._v;
if (_v >= umod()) _v += umod();
return *this;
}
modint &operator*=(const modint &rhs) {
unsigned long long x = _v;
x *= rhs._v;
_v = (unsigned int)(x % (unsigned long long)umod());
return *this;
}
modint &operator/=(const modint &rhs) {
return *this = *this * rhs.inv();
}
modint operator+() const {
return *this;
}
modint operator-() const {
return modint() - *this;
}
modint pow(long long n) const {
assert(0 <= n);
modint x = *this, res = 1;
while (n) {
if (n & 1) res *= x;
x *= x;
n >>= 1;
}
return res;
}
modint inv() const {
assert(_v);
return pow(umod() - 2);
}
friend modint operator+(const modint &lhs, const modint &rhs) {
return modint(lhs) += rhs;
}
friend modint operator-(const modint &lhs, const modint &rhs) {
return modint(lhs) -= rhs;
}
friend modint operator*(const modint &lhs, const modint &rhs) {
return modint(lhs) *= rhs;
}
friend modint operator/(const modint &lhs, const modint &rhs) {
return modint(lhs) /= rhs;
}
friend bool operator==(const modint &lhs, const modint &rhs) {
return lhs.val() == rhs.val();
}
friend bool operator!=(const modint &lhs, const modint &rhs) {
return !(lhs == rhs);
}
private:
unsigned int _v = 0;
static int m;
static unsigned int umod() {
return m;
}
};
template <int id> int dynamic_modint<id>::m = 998244353;
} // namespace ebi
#line 7 "math/mod_sqrt.hpp"
namespace ebi {
std::optional<std::int64_t> mod_sqrt(const std::int64_t &a,
const std::int64_t &p) {
if (a == 0 || a == 1) return a;
using mint = dynamic_modint<100>;
mint::set_mod(p);
if (mint(a).pow((p - 1) >> 1) != 1) return std::nullopt;
mint b = 1;
while (b.pow((p - 1) >> 1) == 1) b += 1;
std::int64_t m = p - 1, e = 0;
while (m % 2 == 0) m >>= 1, e++;
mint x = mint(a).pow((m - 1) >> 1);
mint y = mint(a) * x * x;
x *= a;
mint z = b.pow(m);
while (y != 1) {
std::int64_t j = 0;
mint t = y;
while (t != 1) {
j++;
t *= t;
}
z = z.pow(1ll << (e - j - 1));
x *= z;
z *= z;
y *= z;
e = j;
}
return x.val();
}
} // namespace ebi
#line 7 "fps/fps_sqrt.hpp"
namespace ebi {
template <Modint mint>
std::optional<FormalPowerSeries<mint>> FormalPowerSeries<mint>::sqrt(
int d) const {
using FPS = FormalPowerSeries<mint>;
if (d < 0) d = deg();
if ((*this)[0] == 0) {
for (int i = 1; i < this->deg(); i++) {
if ((*this)[i] != 0) {
if (i & 1) return std::nullopt;
if (d - i / 2 <= 0) break;
auto opt = ((*this) >> i).sqrt(d - i / 2);
if (!opt) return std::nullopt;
auto ret = opt.value() << (i / 2);
if ((int)ret.deg() < d) ret.resize(d);
return ret;
}
}
return FPS(d, 0);
}
auto s = mod_sqrt((*this)[0].val(), mint::mod());
if (!s) {
return std::nullopt;
}
if (this->count_terms() <= 200) {
mint y = s.value();
std::vector<mint> sqrt_f =
pow_sparse_1(*this / (*this)[0], mint(2).inv().val(), d);
FPS g(d);
for (int i = 0; i < d; i++) g[i] = sqrt_f[i] * y;
return g;
}
int n = 1;
FPS g(n);
g[0] = s.value();
mint inv_two = mint(2).inv();
while (n < d) {
n <<= 1;
g = (g + this->pre(n) * g.inv(n)).pre(n) * inv_two;
}
g.resize(d);
return g;
}
} // namespace ebi