This documentation is automatically generated by online-judge-tools/verification-helper
#include "convolution/dirichlet_convolution.hpp"
$a,b$ を与えて、 Dirichlet積 $c = a \times b$ を求める。
dirichlet_convolution(a, b)
を用いる。
愚直にDirichlet積を求める。 $O(N\log N)$
dirichlet_convolution_left_is_multiplicative_function(a, b)
$a$ が乗法的関数であるとき、高速にDirichlet積を求めることができる。 $O(N\log \log N)$
dirichlet_convolution_multiplicative_function(a, b)
を用いる。
$a, b$ が共に乗法的関数であるとき、さらに高速にDirichlet積を求めることができる。 $O(N)$
#pragma once
#include <vector>
#include "../math/eratosthenes_sieve.hpp"
#include "../math/linear_sieve.hpp"
namespace ebi {
template <class T>
std::vector<T> dirichlet_convolution(const std::vector<T> &a,
const std::vector<T> &b) {
assert(a.size() == b.size());
int n = a.size() - 1;
std::vector<T> c(n + 1, 0);
for (int i = 1; i <= n; i++) {
for (int j = 1; i * j <= n; j++) {
c[i * j] += a[i] * b[j];
}
}
return c;
}
template <class T>
std::vector<T> dirichlet_convolution_left_is_multiplicative_function(
const std::vector<T> &a, const std::vector<T> &b) {
assert(a.size() == b.size());
int n = a.size() - 1;
static int m = 1;
static std::vector<int> primes;
if (m < n) {
while (m < n) m <<= 1;
eratosthenes_sieve sieve(m);
primes = sieve.prime_table();
}
std::vector<T> c = b;
for (auto p : primes) {
if (p > n) break;
for (int i = n / p; i >= 1; i--) {
int s = p * i;
int pk = p, j = i;
while (1) {
c[s] += a[pk] * c[j];
if (j % p != 0) break;
pk *= p;
j /= p;
}
}
}
return c;
}
template <class T>
std::vector<T> dirichlet_convolution_multiplicative_function(
const std::vector<T> &a, const std::vector<T> &b) {
assert(a.size() == b.size());
int n = a.size() - 1;
static int m = 1;
static std::vector<std::pair<int, int>> prime_pow_table;
if (m < n) {
while (m < n) m <<= 1;
linear_sieve sieve(m);
prime_pow_table = sieve.prime_power_table(m);
}
std::vector<T> c(n + 1, 0);
c[1] = a[1] * b[1];
for (int i = 2; i <= n; i++) {
auto [p, pk] = prime_pow_table[i];
if (pk == i) {
for (int j = 1; j <= i; j *= p) {
c[i] += a[j] * b[i / j];
}
} else {
c[i] = c[i / pk] * c[pk];
}
}
return c;
}
} // namespace ebi
#line 2 "convolution/dirichlet_convolution.hpp"
#include <vector>
#line 2 "math/eratosthenes_sieve.hpp"
#include <cassert>
#include <cstdint>
#line 6 "math/eratosthenes_sieve.hpp"
/*
reference: https://37zigen.com/sieve-eratosthenes/
*/
namespace ebi {
struct eratosthenes_sieve {
private:
using i64 = std::int_fast64_t;
int n;
std::vector<bool> table;
public:
eratosthenes_sieve(int _n) : n(_n), table(std::vector<bool>(n + 1, true)) {
table[1] = false;
for (i64 i = 2; i * i <= n; i++) {
if (!table[i]) continue;
for (i64 j = i; i * j <= n; j++) {
table[i * j] = false;
}
}
}
bool is_prime(int p) {
return table[p];
}
std::vector<int> prime_table(int m = -1) {
if (m < 0) m = n;
std::vector<int> prime;
for (int i = 2; i <= m; i++) {
if (table[i]) prime.emplace_back(i);
}
return prime;
}
};
} // namespace ebi
#line 2 "math/linear_sieve.hpp"
#line 2 "modint/base.hpp"
#include <concepts>
#include <iostream>
#include <utility>
namespace ebi {
template <class T>
concept Modint = requires(T a, T b) {
a + b;
a - b;
a * b;
a / b;
a.inv();
a.val();
a.pow(std::declval<long long>());
T::mod();
};
template <Modint mint> std::istream &operator>>(std::istream &os, mint &a) {
long long x;
os >> x;
a = x;
return os;
}
template <Modint mint>
std::ostream &operator<<(std::ostream &os, const mint &a) {
return os << a.val();
}
} // namespace ebi
#line 2 "template/int_alias.hpp"
#line 4 "template/int_alias.hpp"
namespace ebi {
using ld = long double;
using std::size_t;
using i8 = std::int8_t;
using u8 = std::uint8_t;
using i16 = std::int16_t;
using u16 = std::uint16_t;
using i32 = std::int32_t;
using u32 = std::uint32_t;
using i64 = std::int64_t;
using u64 = std::uint64_t;
using i128 = __int128_t;
using u128 = __uint128_t;
} // namespace ebi
#line 5 "math/linear_sieve.hpp"
/*
reference: https://37zigen.com/linear-sieve/
verify: https://atcoder.jp/contests/abc162/submissions/25095562
*/
#line 13 "math/linear_sieve.hpp"
namespace ebi {
struct linear_sieve {
private:
using u64 = std::uint64_t;
int n;
std::vector<int> sieve;
std::vector<int> prime;
public:
linear_sieve(int _n) : n(_n), sieve(std::vector<int>(_n + 1, -1)) {
for (int i = 2; i <= n; i++) {
if (sieve[i] < 0) {
sieve[i] = i;
prime.emplace_back(i);
}
for (auto p : prime) {
if (u64(p) * u64(i) > u64(n) || p > sieve[i]) break;
sieve[p * i] = p;
}
}
}
std::vector<int> prime_table() const {
return prime;
}
std::vector<std::pair<int, int>> prime_power_table(int m) const {
assert(m <= n);
std::vector<std::pair<int, int>> table(m + 1, {1, 1});
for (int i = 2; i <= m; i++) {
int p = sieve[i];
table[i] = {p, p};
if (sieve[i / p] == p) {
table[i] = table[i / p];
table[i].second *= p;
}
}
return table;
}
std::vector<std::pair<int, int>> factorize(int x) {
assert(x <= n);
std::vector<std::pair<int, int>> res;
while (x > 1) {
int p = sieve[x];
int exp = 0;
if (p < 0) {
res.emplace_back(x, 1);
break;
}
while (sieve[x] == p) {
x /= p;
exp++;
}
res.emplace_back(p, exp);
}
return res;
}
std::vector<int> divisors(int x) {
assert(x <= n);
std::vector<int> res;
res.emplace_back(1);
auto pf = factorize(x);
for (auto p : pf) {
int sz = (int)res.size();
for (int i = 0; i < sz; i++) {
int ret = 1;
for (int j = 0; j < p.second; j++) {
ret *= p.first;
res.emplace_back(res[i] * ret);
}
}
}
return res;
}
template <class T> std::vector<T> fast_zeta(const std::vector<T> &f) {
std::vector<T> F = f;
int sz = f.size();
assert(sz <= n + 1);
for (int i = 2; i < sz; i++) {
if (sieve[i] != i) continue;
for (int j = (sz - 1) / i; j >= 1; j--) {
F[j] += F[j * i];
}
}
return F;
}
template <class T> std::vector<T> fast_mobius(const std::vector<T> &F) {
std::vector<T> f = F;
int sz = F.size();
assert(sz <= n + 1);
for (int i = 2; i < sz; i++) {
if (sieve[i] != i) continue;
for (int j = 1; j * i < sz; j++) {
f[j] -= f[j * i];
}
}
return f;
}
template <Modint mint> std::vector<mint> pow_table(int m, int k) {
assert(m <= n && k >= 0);
std::vector<mint> table(m + 1, 1);
table[0] = (k == 0);
for (int i = 2; i <= m; i++) {
if (sieve[i] == i) {
table[i] = mint(i).pow(k);
continue;
}
table[i] = table[sieve[i]] * table[i / sieve[i]];
}
return table;
}
template <Modint mint> std::vector<mint> inv_table() {
return pow_table(mint::mod() - 2);
}
};
} // namespace ebi
#line 7 "convolution/dirichlet_convolution.hpp"
namespace ebi {
template <class T>
std::vector<T> dirichlet_convolution(const std::vector<T> &a,
const std::vector<T> &b) {
assert(a.size() == b.size());
int n = a.size() - 1;
std::vector<T> c(n + 1, 0);
for (int i = 1; i <= n; i++) {
for (int j = 1; i * j <= n; j++) {
c[i * j] += a[i] * b[j];
}
}
return c;
}
template <class T>
std::vector<T> dirichlet_convolution_left_is_multiplicative_function(
const std::vector<T> &a, const std::vector<T> &b) {
assert(a.size() == b.size());
int n = a.size() - 1;
static int m = 1;
static std::vector<int> primes;
if (m < n) {
while (m < n) m <<= 1;
eratosthenes_sieve sieve(m);
primes = sieve.prime_table();
}
std::vector<T> c = b;
for (auto p : primes) {
if (p > n) break;
for (int i = n / p; i >= 1; i--) {
int s = p * i;
int pk = p, j = i;
while (1) {
c[s] += a[pk] * c[j];
if (j % p != 0) break;
pk *= p;
j /= p;
}
}
}
return c;
}
template <class T>
std::vector<T> dirichlet_convolution_multiplicative_function(
const std::vector<T> &a, const std::vector<T> &b) {
assert(a.size() == b.size());
int n = a.size() - 1;
static int m = 1;
static std::vector<std::pair<int, int>> prime_pow_table;
if (m < n) {
while (m < n) m <<= 1;
linear_sieve sieve(m);
prime_pow_table = sieve.prime_power_table(m);
}
std::vector<T> c(n + 1, 0);
c[1] = a[1] * b[1];
for (int i = 2; i <= n; i++) {
auto [p, pk] = prime_pow_table[i];
if (pk == i) {
for (int j = 1; j <= i; j *= p) {
c[i] += a[j] * b[i / j];
}
} else {
c[i] = c[i / pk] * c[pk];
}
}
return c;
}
} // namespace ebi