This documentation is automatically generated by online-judge-tools/verification-helper
#include "math/DirichletSeries.hpp"
Dirichlet級数を取り扱う構造体。 $a$ に関するDirichlet級数 $D_a(s)$ は
\[D_a(s) = \sum_{n = 1}^{\infty} a_n s^{-n}\]で表される。これを長さ $N$ で打ち切ったものについて取り扱う。
Dirichlet級数についてと実装方法について、maspyさんの記事を参考にした。
$a_i$ を返す関数 $f$ とその累積和 $A_i$ を計算する関数 $F$ を引数として渡すことで、 $a$ に関するDirichlet級数を生成する。
set_size(n)
をすることを忘れずにすること。
$O(K + L)$
$O(K\log K + (NL)^{1/2})$
$O(K\log K + (NL)^{1/2})$
$\sum_{n = 1}^{N} a_n$ を返す。 $O(1)$
Dirichlet級数 $a$ について $a^n$ を求める。繰り返し二乗法で $\log n$ 回程度の積が実行される。
$\zeta(s) = \sum_{n = 1}^{\infty} s^{-n}$ のDirichlet級数を返す。
$\zeta(s-1) = \sum_{n = 1}^{\infty} n \times s^{-n}$ のDirichlet級数を返す。
長さを $n$ にする。
長さを $n$ として、 $a$ が乗法的関数のとき、計算量が良くなるような分割になるようにする。
#pragma once
#include <functional>
#include <numeric>
#include <vector>
#include "../convolution/dirichlet_convolution.hpp"
#include "../template/int_alias.hpp"
namespace ebi {
template <class T, int id> struct DirichletSeries {
private:
using Self = DirichletSeries<T, id>;
void set(std::function<T(i64)> f, std::function<T(i64)> F) {
for (int i = 1; i <= K; i++) {
a[i] = f(i);
}
for (int i = 1; i <= L; i++) {
A[i] = F(N / i);
}
}
public:
DirichletSeries() : a(K + 1), A(L + 1) {}
DirichletSeries(std::function<T(i64)> f, std::function<T(i64)> F,
bool _is_multiplicative = false)
: a(K + 1), A(L + 1), is_multiplicative(_is_multiplicative) {
set(f, F);
}
Self operator+(const Self &rhs) const noexcept {
return Self(*this) += rhs;
}
Self operator-(const Self &rhs) const noexcept {
return Self(*this) -= rhs;
}
Self operator*(const Self &rhs) const noexcept {
return Self(*this) *= rhs;
}
Self operator/(const Self &rhs) const noexcept {
return Self(*this) /= rhs;
}
Self operator+=(const Self &rhs) noexcept {
for (int i = 1; i <= K; i++) {
a[i] += rhs.a[i];
}
for (int i = 1; i <= L; i++) {
A[i] += rhs.A[i];
}
return *this;
}
Self operator-=(const Self &rhs) noexcept {
for (int i = 1; i <= K; i++) {
a[i] -= rhs.a[i];
}
for (int i = 1; i <= L; i++) {
A[i] -= rhs.A[i];
}
return *this;
}
Self operator*=(const Self &rhs) noexcept {
Self ret;
if (is_multiplicative && rhs.is_multiplicative) {
ret.a = dirichlet_convolution_multiplicative_function(a, rhs.a);
ret.is_multiplicative = true;
} else if (is_multiplicative) {
ret.a =
dirichlet_convolution_left_is_multiplicative_function(a, rhs.a);
} else if (rhs.is_multiplicative) {
ret.a =
dirichlet_convolution_left_is_multiplicative_function(rhs.a, a);
} else {
ret.a = dirichlet_convolution(a, rhs.a);
}
std::vector<T> sum_a = a, sum_b = rhs.a;
for (int i = 1; i < K; i++) {
sum_a[i + 1] += sum_a[i];
sum_b[i + 1] += sum_b[i];
}
auto get_A = [&](i64 x) -> T {
if (x <= K) {
return sum_a[x];
} else {
return A[N / x];
}
};
auto get_B = [&](i64 x) -> T {
if (x <= K) {
return sum_b[x];
} else {
return rhs.A[N / x];
}
};
for (i64 l = L, m = 1; l >= 1; l--) {
i64 n = N / l;
while (m * m <= n) m++;
m--;
for (int i = 1; i <= m; i++) {
ret.A[l] +=
a[i] * get_B(n / i) + (get_A(n / i) - get_A(m)) * rhs.a[i];
}
}
return ret;
}
// c = a / b
Self operator/=(const Self &b) noexcept {
Self c = *this;
T inv_a = b.a[1].inv();
for (int i = 1; i <= K; i++) {
c.a[i] *= inv_a;
for (int j = 2; i * j <= K; j++) {
c.a[i * j] -= c.a[i] * b.a[j];
}
}
std::vector<T> sum_b = b.a, sum_c = c.a;
for (int i = 1; i < K; ++i) {
sum_b[i + 1] += sum_b[i];
sum_c[i + 1] += sum_c[i];
}
auto get_B = [&](i64 x) -> T {
if (x <= K) {
return sum_b[x];
} else {
return b.A[N / x];
}
};
auto get_C = [&](i64 x) -> T {
if (x <= K) {
return sum_c[x];
} else {
return c.A[N / x];
}
};
for (i64 l = L, m = 1; l >= 1; l--) {
i64 n = N / l;
while (m * m <= n) m++;
m--;
for (int i = 2; i <= m; i++) {
c.A[l] -= b.a[i] * get_C(n / i);
}
for (int i = 1; i <= m; i++) {
c.A[l] -= c.a[i] * (get_B(n / i) - get_B(m));
}
c.A[l] *= inv_a;
}
return *this = c;
}
Self pow(u64 n) const {
Self res;
res.a[1] = 1;
res.is_multiplicative = is_multiplicative;
std::fill(res.A.begin(), res.A.end(), 1);
Self x = *this;
while (n > 0) {
if (n & 1) res = res * x;
x = x * x;
n >>= 1;
}
return res;
}
T get_sum() {
return A[1];
}
static Self zeta() {
Self ret;
std::fill(ret.a.begin(), ret.a.end(), 1);
for (int i = 1; i <= L; i++) {
ret.A[i] = N / i;
}
ret.is_multiplicative = true;
return ret;
}
static Self zeta1() {
Self ret;
ret.is_multiplicative = true;
std::iota(ret.a.begin(), ret.a.end(), 0);
T inv2 = T(2).inv();
for (int i = 1; i <= L; i++) {
i64 n = N / i;
ret.A[i] = T(n) * T(n + 1) * inv2;
}
return ret;
}
static Self zeta2() {
Self ret;
ret.is_multiplicative = true;
for (int i = 1; i <= K; i++) {
ret.a[i] = i * i;
}
T inv6 = T(6).inv();
for (int i = 1; i <= L; i++) {
i64 n = N / i;
ret.A[i] = T(n) * T(n + 1) * T(2 * n + 1) * inv6;
}
}
static void set_size(i64 n) {
N = n;
if (N <= 10) {
K = N;
L = 1;
} else if (N <= 5000) {
K = 1;
while (K * K < N) K++;
L = (N + K - 1) / K;
} else {
L = 1;
while (L * L * L / 50 < N) L++;
K = (N + L - 1) / L;
}
}
static void set_size_multiplicative(i64 n) {
N = n;
L = 1;
while (L * L * L < N) L++;
K = L * L;
}
private:
static i64 N, K, L;
static std::vector<std::pair<int, int>> prime_pow_table;
std::vector<T> a, A;
bool is_multiplicative = false;
};
template <class T, int id> i64 DirichletSeries<T, id>::N = 1000000;
template <class T, int id> i64 DirichletSeries<T, id>::K = 10000;
template <class T, int id> i64 DirichletSeries<T, id>::L = 100;
template <class T, int id>
std::vector<std::pair<int, int>> DirichletSeries<T, id>::prime_pow_table = {};
} // namespace ebi
#line 2 "math/DirichletSeries.hpp"
#include <functional>
#include <numeric>
#include <vector>
#line 2 "convolution/dirichlet_convolution.hpp"
#line 4 "convolution/dirichlet_convolution.hpp"
#line 2 "math/eratosthenes_sieve.hpp"
#include <cassert>
#include <cstdint>
#line 6 "math/eratosthenes_sieve.hpp"
/*
reference: https://37zigen.com/sieve-eratosthenes/
*/
namespace ebi {
struct eratosthenes_sieve {
private:
using i64 = std::int_fast64_t;
int n;
std::vector<bool> table;
public:
eratosthenes_sieve(int _n) : n(_n), table(std::vector<bool>(n + 1, true)) {
table[1] = false;
for (i64 i = 2; i * i <= n; i++) {
if (!table[i]) continue;
for (i64 j = i; i * j <= n; j++) {
table[i * j] = false;
}
}
}
bool is_prime(int p) {
return table[p];
}
std::vector<int> prime_table(int m = -1) {
if (m < 0) m = n;
std::vector<int> prime;
for (int i = 2; i <= m; i++) {
if (table[i]) prime.emplace_back(i);
}
return prime;
}
};
} // namespace ebi
#line 2 "math/linear_sieve.hpp"
#line 2 "modint/base.hpp"
#include <concepts>
#include <iostream>
#include <utility>
namespace ebi {
template <class T>
concept Modint = requires(T a, T b) {
a + b;
a - b;
a * b;
a / b;
a.inv();
a.val();
a.pow(std::declval<long long>());
T::mod();
};
template <Modint mint> std::istream &operator>>(std::istream &os, mint &a) {
long long x;
os >> x;
a = x;
return os;
}
template <Modint mint>
std::ostream &operator<<(std::ostream &os, const mint &a) {
return os << a.val();
}
} // namespace ebi
#line 2 "template/int_alias.hpp"
#line 4 "template/int_alias.hpp"
namespace ebi {
using ld = long double;
using std::size_t;
using i8 = std::int8_t;
using u8 = std::uint8_t;
using i16 = std::int16_t;
using u16 = std::uint16_t;
using i32 = std::int32_t;
using u32 = std::uint32_t;
using i64 = std::int64_t;
using u64 = std::uint64_t;
using i128 = __int128_t;
using u128 = __uint128_t;
} // namespace ebi
#line 5 "math/linear_sieve.hpp"
/*
reference: https://37zigen.com/linear-sieve/
verify: https://atcoder.jp/contests/abc162/submissions/25095562
*/
#line 13 "math/linear_sieve.hpp"
namespace ebi {
struct linear_sieve {
private:
using u64 = std::uint64_t;
int n;
std::vector<int> sieve;
std::vector<int> prime;
public:
linear_sieve(int _n) : n(_n), sieve(std::vector<int>(_n + 1, -1)) {
for (int i = 2; i <= n; i++) {
if (sieve[i] < 0) {
sieve[i] = i;
prime.emplace_back(i);
}
for (auto p : prime) {
if (u64(p) * u64(i) > u64(n) || p > sieve[i]) break;
sieve[p * i] = p;
}
}
}
std::vector<int> prime_table() const {
return prime;
}
std::vector<std::pair<int, int>> prime_power_table(int m) const {
assert(m <= n);
std::vector<std::pair<int, int>> table(m + 1, {1, 1});
for (int i = 2; i <= m; i++) {
int p = sieve[i];
table[i] = {p, p};
if (sieve[i / p] == p) {
table[i] = table[i / p];
table[i].second *= p;
}
}
return table;
}
std::vector<std::pair<int, int>> factorize(int x) {
assert(x <= n);
std::vector<std::pair<int, int>> res;
while (x > 1) {
int p = sieve[x];
int exp = 0;
if (p < 0) {
res.emplace_back(x, 1);
break;
}
while (sieve[x] == p) {
x /= p;
exp++;
}
res.emplace_back(p, exp);
}
return res;
}
std::vector<int> divisors(int x) {
assert(x <= n);
std::vector<int> res;
res.emplace_back(1);
auto pf = factorize(x);
for (auto p : pf) {
int sz = (int)res.size();
for (int i = 0; i < sz; i++) {
int ret = 1;
for (int j = 0; j < p.second; j++) {
ret *= p.first;
res.emplace_back(res[i] * ret);
}
}
}
return res;
}
template <class T> std::vector<T> fast_zeta(const std::vector<T> &f) {
std::vector<T> F = f;
int sz = f.size();
assert(sz <= n + 1);
for (int i = 2; i < sz; i++) {
if (sieve[i] != i) continue;
for (int j = (sz - 1) / i; j >= 1; j--) {
F[j] += F[j * i];
}
}
return F;
}
template <class T> std::vector<T> fast_mobius(const std::vector<T> &F) {
std::vector<T> f = F;
int sz = F.size();
assert(sz <= n + 1);
for (int i = 2; i < sz; i++) {
if (sieve[i] != i) continue;
for (int j = 1; j * i < sz; j++) {
f[j] -= f[j * i];
}
}
return f;
}
template <Modint mint> std::vector<mint> pow_table(int m, int k) {
assert(m <= n && k >= 0);
std::vector<mint> table(m + 1, 1);
table[0] = (k == 0);
for (int i = 2; i <= m; i++) {
if (sieve[i] == i) {
table[i] = mint(i).pow(k);
continue;
}
table[i] = table[sieve[i]] * table[i / sieve[i]];
}
return table;
}
template <Modint mint> std::vector<mint> inv_table() {
return pow_table(mint::mod() - 2);
}
};
} // namespace ebi
#line 7 "convolution/dirichlet_convolution.hpp"
namespace ebi {
template <class T>
std::vector<T> dirichlet_convolution(const std::vector<T> &a,
const std::vector<T> &b) {
assert(a.size() == b.size());
int n = a.size() - 1;
std::vector<T> c(n + 1, 0);
for (int i = 1; i <= n; i++) {
for (int j = 1; i * j <= n; j++) {
c[i * j] += a[i] * b[j];
}
}
return c;
}
template <class T>
std::vector<T> dirichlet_convolution_left_is_multiplicative_function(
const std::vector<T> &a, const std::vector<T> &b) {
assert(a.size() == b.size());
int n = a.size() - 1;
static int m = 1;
static std::vector<int> primes;
if (m < n) {
while (m < n) m <<= 1;
eratosthenes_sieve sieve(m);
primes = sieve.prime_table();
}
std::vector<T> c = b;
for (auto p : primes) {
if (p > n) break;
for (int i = n / p; i >= 1; i--) {
int s = p * i;
int pk = p, j = i;
while (1) {
c[s] += a[pk] * c[j];
if (j % p != 0) break;
pk *= p;
j /= p;
}
}
}
return c;
}
template <class T>
std::vector<T> dirichlet_convolution_multiplicative_function(
const std::vector<T> &a, const std::vector<T> &b) {
assert(a.size() == b.size());
int n = a.size() - 1;
static int m = 1;
static std::vector<std::pair<int, int>> prime_pow_table;
if (m < n) {
while (m < n) m <<= 1;
linear_sieve sieve(m);
prime_pow_table = sieve.prime_power_table(m);
}
std::vector<T> c(n + 1, 0);
c[1] = a[1] * b[1];
for (int i = 2; i <= n; i++) {
auto [p, pk] = prime_pow_table[i];
if (pk == i) {
for (int j = 1; j <= i; j *= p) {
c[i] += a[j] * b[i / j];
}
} else {
c[i] = c[i / pk] * c[pk];
}
}
return c;
}
} // namespace ebi
#line 9 "math/DirichletSeries.hpp"
namespace ebi {
template <class T, int id> struct DirichletSeries {
private:
using Self = DirichletSeries<T, id>;
void set(std::function<T(i64)> f, std::function<T(i64)> F) {
for (int i = 1; i <= K; i++) {
a[i] = f(i);
}
for (int i = 1; i <= L; i++) {
A[i] = F(N / i);
}
}
public:
DirichletSeries() : a(K + 1), A(L + 1) {}
DirichletSeries(std::function<T(i64)> f, std::function<T(i64)> F,
bool _is_multiplicative = false)
: a(K + 1), A(L + 1), is_multiplicative(_is_multiplicative) {
set(f, F);
}
Self operator+(const Self &rhs) const noexcept {
return Self(*this) += rhs;
}
Self operator-(const Self &rhs) const noexcept {
return Self(*this) -= rhs;
}
Self operator*(const Self &rhs) const noexcept {
return Self(*this) *= rhs;
}
Self operator/(const Self &rhs) const noexcept {
return Self(*this) /= rhs;
}
Self operator+=(const Self &rhs) noexcept {
for (int i = 1; i <= K; i++) {
a[i] += rhs.a[i];
}
for (int i = 1; i <= L; i++) {
A[i] += rhs.A[i];
}
return *this;
}
Self operator-=(const Self &rhs) noexcept {
for (int i = 1; i <= K; i++) {
a[i] -= rhs.a[i];
}
for (int i = 1; i <= L; i++) {
A[i] -= rhs.A[i];
}
return *this;
}
Self operator*=(const Self &rhs) noexcept {
Self ret;
if (is_multiplicative && rhs.is_multiplicative) {
ret.a = dirichlet_convolution_multiplicative_function(a, rhs.a);
ret.is_multiplicative = true;
} else if (is_multiplicative) {
ret.a =
dirichlet_convolution_left_is_multiplicative_function(a, rhs.a);
} else if (rhs.is_multiplicative) {
ret.a =
dirichlet_convolution_left_is_multiplicative_function(rhs.a, a);
} else {
ret.a = dirichlet_convolution(a, rhs.a);
}
std::vector<T> sum_a = a, sum_b = rhs.a;
for (int i = 1; i < K; i++) {
sum_a[i + 1] += sum_a[i];
sum_b[i + 1] += sum_b[i];
}
auto get_A = [&](i64 x) -> T {
if (x <= K) {
return sum_a[x];
} else {
return A[N / x];
}
};
auto get_B = [&](i64 x) -> T {
if (x <= K) {
return sum_b[x];
} else {
return rhs.A[N / x];
}
};
for (i64 l = L, m = 1; l >= 1; l--) {
i64 n = N / l;
while (m * m <= n) m++;
m--;
for (int i = 1; i <= m; i++) {
ret.A[l] +=
a[i] * get_B(n / i) + (get_A(n / i) - get_A(m)) * rhs.a[i];
}
}
return ret;
}
// c = a / b
Self operator/=(const Self &b) noexcept {
Self c = *this;
T inv_a = b.a[1].inv();
for (int i = 1; i <= K; i++) {
c.a[i] *= inv_a;
for (int j = 2; i * j <= K; j++) {
c.a[i * j] -= c.a[i] * b.a[j];
}
}
std::vector<T> sum_b = b.a, sum_c = c.a;
for (int i = 1; i < K; ++i) {
sum_b[i + 1] += sum_b[i];
sum_c[i + 1] += sum_c[i];
}
auto get_B = [&](i64 x) -> T {
if (x <= K) {
return sum_b[x];
} else {
return b.A[N / x];
}
};
auto get_C = [&](i64 x) -> T {
if (x <= K) {
return sum_c[x];
} else {
return c.A[N / x];
}
};
for (i64 l = L, m = 1; l >= 1; l--) {
i64 n = N / l;
while (m * m <= n) m++;
m--;
for (int i = 2; i <= m; i++) {
c.A[l] -= b.a[i] * get_C(n / i);
}
for (int i = 1; i <= m; i++) {
c.A[l] -= c.a[i] * (get_B(n / i) - get_B(m));
}
c.A[l] *= inv_a;
}
return *this = c;
}
Self pow(u64 n) const {
Self res;
res.a[1] = 1;
res.is_multiplicative = is_multiplicative;
std::fill(res.A.begin(), res.A.end(), 1);
Self x = *this;
while (n > 0) {
if (n & 1) res = res * x;
x = x * x;
n >>= 1;
}
return res;
}
T get_sum() {
return A[1];
}
static Self zeta() {
Self ret;
std::fill(ret.a.begin(), ret.a.end(), 1);
for (int i = 1; i <= L; i++) {
ret.A[i] = N / i;
}
ret.is_multiplicative = true;
return ret;
}
static Self zeta1() {
Self ret;
ret.is_multiplicative = true;
std::iota(ret.a.begin(), ret.a.end(), 0);
T inv2 = T(2).inv();
for (int i = 1; i <= L; i++) {
i64 n = N / i;
ret.A[i] = T(n) * T(n + 1) * inv2;
}
return ret;
}
static Self zeta2() {
Self ret;
ret.is_multiplicative = true;
for (int i = 1; i <= K; i++) {
ret.a[i] = i * i;
}
T inv6 = T(6).inv();
for (int i = 1; i <= L; i++) {
i64 n = N / i;
ret.A[i] = T(n) * T(n + 1) * T(2 * n + 1) * inv6;
}
}
static void set_size(i64 n) {
N = n;
if (N <= 10) {
K = N;
L = 1;
} else if (N <= 5000) {
K = 1;
while (K * K < N) K++;
L = (N + K - 1) / K;
} else {
L = 1;
while (L * L * L / 50 < N) L++;
K = (N + L - 1) / L;
}
}
static void set_size_multiplicative(i64 n) {
N = n;
L = 1;
while (L * L * L < N) L++;
K = L * L;
}
private:
static i64 N, K, L;
static std::vector<std::pair<int, int>> prime_pow_table;
std::vector<T> a, A;
bool is_multiplicative = false;
};
template <class T, int id> i64 DirichletSeries<T, id>::N = 1000000;
template <class T, int id> i64 DirichletSeries<T, id>::K = 10000;
template <class T, int id> i64 DirichletSeries<T, id>::L = 100;
template <class T, int id>
std::vector<std::pair<int, int>> DirichletSeries<T, id>::prime_pow_table = {};
} // namespace ebi