This documentation is automatically generated by online-judge-tools/verification-helper
#define PROBLEM \
"https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=1623&lang=jp"
#include "../../geometry/base_arbitary.hpp"
#include "../../template/template.hpp"
#include "../../utility/rational.hpp"
using namespace lib;
using vec = Vec<rational>;
using line = Line<rational>;
const vector<vector<int>> order = {{0, 1, 2}, {0, 2, 1}, {1, 0, 2},
{1, 2, 0}, {2, 0, 1}, {2, 1, 0}};
int main() {
while (true) {
vector<vec> ia(3), b(3);
rep(i, 0, 6) {
ll x, y;
cin >> x >> y;
if (!cin) return 0;
(i < 3 ? ia[i] : b[i - 3]) = vec(x, y);
}
int ans = 5;
for (auto fid : order)
for (auto tid : order) rep(j, 0, 2) {
auto a = ia;
int cur = 0;
rep(i, 0, 3) {
int f = fid[i], t = tid[i];
if (a[f] == b[t]) continue;
cur++;
int p = (f + 1) % 3, q = (f + 2) % 3;
if (cross(a[p] - a[q], b[t] - a[f]) == 0) {
a[f] = b[t];
continue;
}
cur++;
if (j == 1) swap(p, q);
line l1({a[p], a[p] + a[f] - b[t]}),
l2({a[q], a[q] + a[f] - a[p]});
if (intersection(l1, l2) == 1) {
a[q] = cross_point(l1, l2);
a[f] = b[t];
} else {
cur = 5;
break;
}
}
chmin(ans, cur);
}
if (ans == 5)
cout << "Many" << endl;
else
cout << ans << endl;
}
}
#line 1 "test/geometry/base_rational.test.cpp"
#define PROBLEM \
"https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=1623&lang=jp"
#line 2 "geometry/base_arbitary.hpp"
#line 2 "template/template.hpp"
#include <bits/stdc++.h>
#define rep(i, s, n) for (int i = (int)(s); i < (int)(n); i++)
#define rrep(i, s, n) for (int i = (int)(n)-1; i >= (int)(s); i--)
#define all(v) v.begin(), v.end()
using ll = long long;
using ld = long double;
using ull = unsigned long long;
template <typename T> bool chmin(T &a, const T &b) {
if (a <= b) return false;
a = b;
return true;
}
template <typename T> bool chmax(T &a, const T &b) {
if (a >= b) return false;
a = b;
return true;
}
namespace lib {
using namespace std;
} // namespace lib
// using namespace lib;
#line 4 "geometry/base_arbitary.hpp"
namespace lib {
template <typename T> struct Vec {
T x, y;
Vec(T _x = T(0), T _y = T(0)) : x(_x), y(_y) {}
Vec& operator*=(const T& a) {
x *= a;
y *= a;
return *this;
}
Vec& operator/=(const T& a) {
x /= a;
y /= a;
return *this;
}
Vec& operator+=(const Vec& rhs) {
x += rhs.x;
y += rhs.y;
return *this;
}
Vec& operator-=(const Vec& rhs) {
x -= rhs.x;
y -= rhs.y;
return *this;
}
friend bool operator==(const Vec& lhs, const Vec& rhs) {
return lhs.x == rhs.x && lhs.y == rhs.y;
}
friend bool operator!=(const Vec& lhs, const Vec& rhs) {
return lhs.x != rhs.x || lhs.y != rhs.y;
}
friend Vec operator+(const Vec& lhs, const Vec& rhs) {
return Vec(lhs) += rhs;
}
friend Vec operator-(const Vec& lhs, const Vec& rhs) {
return Vec(lhs) -= rhs;
}
friend Vec operator*(const Vec& lhs, const T& rhs) {
return Vec(lhs) *= rhs;
}
friend Vec operator*(const T& rhs, const Vec& lhs) {
return Vec(lhs) *= rhs;
}
friend Vec operator/(const Vec& lhs, const T& rhs) {
return Vec(lhs) /= rhs;
}
friend Vec operator/(const T& rhs, const Vec& lhs) {
return Vec(lhs) /= rhs;
}
};
template <typename T> T dot(const Vec<T>& a, const Vec<T>& b) {
return a.x * b.x + a.y * b.y;
}
// cross > 0 : counter clockwise a -> b
template <typename T> T cross(const Vec<T>& a, const Vec<T>& b) {
return a.x * b.y - a.y * b.x;
}
template <typename T> ld abs(const Vec<T>& a) {
return sqrtl(a.x * a.x + a.y * a.y);
}
template <typename T> T norm(const Vec<T>& a) {
return a.x * a.x + a.y * a.y;
}
template <typename T> struct Line { Vec<T> p, q; };
template <typename T> int intersection(const Line<T>& a, const Line<T>& b) {
if (cross(a.p - a.q, b.p - b.q) == 0) {
if (cross(a.p - b.p, a.q - b.p) == 0) return 2;
return 0;
}
return 1;
}
// intersection == 1 (cross(a.p-a.q,b.p-b.q) != 0)
template <typename T> Vec<T> cross_point(const Line<T>& a, const Line<T>& b) {
Vec<T> va = a.p - a.q, vb = b.p - b.q;
Vec<T> ba = b.p - a.q;
T alpha = cross(ba, vb) / cross(va, vb);
return alpha * a.p + (1 - alpha) * a.q;
}
} // namespace lib
#line 2 "utility/rational.hpp"
#line 4 "utility/rational.hpp"
namespace lib {
struct rational {
rational() : p(0), q(1) {}
rational(ll n) : p(n), q(1) {}
rational(ll n, ll m) {
assert(m != 0);
if (m < 0) n = -n, m = -m;
ll g = gcd(n, m);
p = n / g;
q = m / g;
}
explicit operator const ld () const { return ld(p) / ld(q); }
rational& operator+=(const rational& rhs){
ll g = gcd(q, rhs.q);
ll np = rhs.q / g * p + q / g * rhs.p;
ll nq = q / g * rhs.q;
ll ng = gcd(np, nq);
p = np / ng, q = nq / ng;
return *this;
}
rational& operator-=(const rational& rhs) {
(*this) += rational(-rhs.p, rhs.q);
return *this;
}
rational& operator*=(const rational& rhs) {
ll g1 = gcd(q, rhs.p), g2 = gcd(p, rhs.q);
ll np = p / g2 * rhs.p / g1;
ll nq = q / g1 * rhs.q / g2;
p = np, q = nq;
return *this;
}
rational& operator/=(const rational& rhs) {
(*this) *= rational(rhs.q, rhs.p);
return *this;
}
rational operator+() const {
return *this;
}
rational operator-() const {
return rational() - *this;
}
friend rational operator+(const rational& lhs, const rational& rhs) {
return rational(lhs) += rhs;
}
friend rational operator-(const rational& lhs, const rational& rhs) {
return rational(lhs) -= rhs;
}
friend rational operator*(const rational& lhs, const rational& rhs) {
return rational(lhs) *= rhs;
}
friend rational operator/(const rational& lhs, const rational& rhs) {
return rational(lhs) /= rhs;
}
friend bool operator==(const rational& lhs, const rational& rhs) {
return lhs.p == rhs.p && lhs.q == rhs.q;
}
friend bool operator!=(const rational& lhs, const rational& rhs) {
return lhs.p != rhs.p || lhs.q != rhs.q;
}
friend bool operator<(const rational lhs, const rational rhs) {
return less_than(lhs, rhs);
}
friend bool operator>(const rational lhs, const rational rhs) {
return less_than(rhs, lhs);
}
friend bool operator<=(const rational lhs, const rational rhs) {
return lhs == rhs || lhs < rhs;
}
friend bool operator>=(const rational lhs, const rational rhs) {
return lhs == rhs || lhs > rhs;
}
friend std::ostream& operator<<(std::ostream& os, const rational& r) {
return os << r.p << " / " << r.q;
}
std::pair<ll,ll> val() const {
return {p, q};
}
private:
ll p, q;
static bool less_than(rational lhs, rational rhs) {
__int128_t lv = __int128_t(lhs.p) * __int128_t(rhs.q);
__int128_t rv = __int128_t(lhs.q) * __int128_t(rhs.p);
return lv < rv;
}
};
} // namespace lib
#line 7 "test/geometry/base_rational.test.cpp"
using namespace lib;
using vec = Vec<rational>;
using line = Line<rational>;
const vector<vector<int>> order = {{0, 1, 2}, {0, 2, 1}, {1, 0, 2},
{1, 2, 0}, {2, 0, 1}, {2, 1, 0}};
int main() {
while (true) {
vector<vec> ia(3), b(3);
rep(i, 0, 6) {
ll x, y;
cin >> x >> y;
if (!cin) return 0;
(i < 3 ? ia[i] : b[i - 3]) = vec(x, y);
}
int ans = 5;
for (auto fid : order)
for (auto tid : order) rep(j, 0, 2) {
auto a = ia;
int cur = 0;
rep(i, 0, 3) {
int f = fid[i], t = tid[i];
if (a[f] == b[t]) continue;
cur++;
int p = (f + 1) % 3, q = (f + 2) % 3;
if (cross(a[p] - a[q], b[t] - a[f]) == 0) {
a[f] = b[t];
continue;
}
cur++;
if (j == 1) swap(p, q);
line l1({a[p], a[p] + a[f] - b[t]}),
l2({a[q], a[q] + a[f] - a[p]});
if (intersection(l1, l2) == 1) {
a[q] = cross_point(l1, l2);
a[f] = b[t];
} else {
cur = 5;
break;
}
}
chmin(ans, cur);
}
if (ans == 5)
cout << "Many" << endl;
else
cout << ans << endl;
}
}