This documentation is automatically generated by online-judge-tools/verification-helper
#include "geometry3D/ld/line.hpp"
#pragma once
#include "base_ld.hpp"
namespace lib {
struct line {
vec a, b;
};
vec proj(const line &l, const vec &p) {
vec ab = l.b - l.a;
return l.a + ab * (dot(ab, p - l.a) / norm(ab));
}
vec refl(const line &l, const vec &p) { return proj(l, p) * ld(2) - p; }
int intersection(const line &p, const line &q){
// cross_point = alpha * p.a + (1-alpha) * p.b = beta * q.b + (1-beta) * q.a
// alpha * vp + beta * vq = vr
vec vp = p.a - p.b, vq = q.a - q.b, vr = q.a - p.b;
vec cpq = cross(vp,vq), cpr = cross(vp,vr), crq = cross(vr,vq);
// yz projection
if (sgn(cpq.x) != 0){
ld alpha = crq.x / cpq.x, beta = cpr.x / cpq.x;
// cross
if (sgn(abs(alpha * vp.x + beta * vq.x - vr.x)) == 0){
return 0;
}
// nejire
return 1;
}
// zx projection
if (sgn(cpq.y) != 0){
ld alpha = crq.y / cpq.y, beta = cpr.y / cpq.y;
// cross
if (sgn(abs(alpha * vp.y + beta * vq.y - vr.y)) == 0){
return 0;
}
// nejire
return 1;
}
// xy projection
if (sgn(cpq.z) != 0){
ld alpha = crq.z / cpq.z, beta = cpr.z / cpq.z;
// cross
if (sgn(abs(alpha * vp.z + beta * vq.z - vr.z)) == 0){
return 0;
}
// nejire
return 1;
}
// cpq == 0 -> parallel
// same
if (sgn(abs(cross(p.a - q.a, p.b - q.a))) == 0){
return 3;
}
// not same
return 2;
}
ld dist(const line &l, const vec &p){
return abs(p - proj(l,p));
}
vec cross_point(const line &p, const line &q){
assert(intersection(p,q) == 0);
// cross_point = alpha * p.a + (1-alpha) * p.b = beta * q.b + (1-beta) * q.a
// alpha * vp + beta * vq = vr
vec vp = p.a - p.b, vq = q.a - q.b, vr = q.a - p.b;
vec cpq = cross(vp,vq), cpr = cross(vp,vr), crq = cross(vr,vq);
auto res = [&](ld alpha){
return alpha * p.a + (1-alpha) * p.b;
};
// yz projection
if (sgn(cpq.x) != 0){
ld alpha = crq.x / cpq.x, beta = cpr.x / cpq.x;
// cross
if (sgn(abs(alpha * vp.x + beta * vq.x - vr.x)) == 0){
return res(alpha);
}
}
// zx projection
if (sgn(cpq.y) != 0){
ld alpha = crq.y / cpq.y, beta = cpr.y / cpq.y;
// cross
if (sgn(abs(alpha * vp.y + beta * vq.y - vr.y)) == 0){
return res(alpha);
}
}
// xy projection
if (sgn(cpq.z) != 0){
ld alpha = crq.z / cpq.z, beta = cpr.z / cpq.z;
// cross
if (sgn(abs(alpha * vp.z + beta * vq.z - vr.z)) == 0){
return res(alpha);
}
}
// NOT expected
return vec();
}
} // namespace lib
#line 2 "geometry3D/ld/line.hpp"
#line 2 "geometry3D/ld/base_ld.hpp"
#line 2 "template/template.hpp"
#include <bits/stdc++.h>
#define rep(i, s, n) for (int i = (int)(s); i < (int)(n); i++)
#define rrep(i, s, n) for (int i = (int)(n)-1; i >= (int)(s); i--)
#define all(v) v.begin(), v.end()
using ll = long long;
using ld = long double;
using ull = unsigned long long;
template <typename T> bool chmin(T &a, const T &b) {
if (a <= b) return false;
a = b;
return true;
}
template <typename T> bool chmax(T &a, const T &b) {
if (a >= b) return false;
a = b;
return true;
}
namespace lib {
using namespace std;
} // namespace lib
// using namespace lib;
#line 2 "geometry3D/base_arbitary.hpp"
#line 4 "geometry3D/base_arbitary.hpp"
namespace lib {
template<typename T>
struct Vec {
T x, y, z;
Vec (T _x = 0, T _y = 0, T _z = 0) : x(_x), y(_y), z(_z) {}
Vec& operator*=(const T& a){
x *= a;
y *= a;
z *= a;
return *this;
}
Vec& operator/=(const T& a){
x /= a;
y /= a;
z /= a;
return *this;
}
Vec& operator+=(const Vec& rhs) {
x += rhs.x;
y += rhs.y;
z += rhs.z;
return *this;
}
Vec& operator-=(const Vec& rhs) {
x -= rhs.x;
y -= rhs.y;
z -= rhs.z;
return *this;
}
friend Vec operator+(const Vec& lhs, const Vec& rhs) {
return Vec(lhs) += rhs;
}
friend Vec operator-(const Vec& lhs, const Vec& rhs) {
return Vec(lhs) -= rhs;
}
friend Vec operator*(const Vec& lhs, const T& rhs) {
return Vec(lhs) *= rhs;
}
friend Vec operator*(const T& rhs, const Vec& lhs) {
return Vec(lhs) *= rhs;
}
friend Vec operator/(const Vec& lhs, const T& rhs) {
return Vec(lhs) /= rhs;
}
friend std::ostream &operator<<(std::ostream &os,const Vec&r) {
return os << "(" << r.x << "," << r.y << "," << r.z << ")";
}
};
};
#line 5 "geometry3D/ld/base_ld.hpp"
namespace lib {
using vec = Vec<ld>;
const ld eps = 1e-7;
void ldout(int len = 20) { cout << fixed << setprecision(len); }
int sgn(ld a) { return (a < -eps) ? -1 : (a > eps) ? 1 : 0; }
ld dot(const vec &a, const vec &b){
return a.x*b.x + a.y*b.y + a.z*b.z;
}
vec cross(const vec &a, const vec &b){
return Vec(a.y*b.z-a.z*b.y, a.z*b.x-a.x*b.z, a.x*b.y-a.y*b.x);
}
ld norm(const vec &a){
return a.x*a.x+a.y*a.y+a.z*a.z;
}
ld abs(const vec &a){
return sqrtl(norm(a));
}
} // namespace lib
#line 4 "geometry3D/ld/line.hpp"
namespace lib {
struct line {
vec a, b;
};
vec proj(const line &l, const vec &p) {
vec ab = l.b - l.a;
return l.a + ab * (dot(ab, p - l.a) / norm(ab));
}
vec refl(const line &l, const vec &p) { return proj(l, p) * ld(2) - p; }
int intersection(const line &p, const line &q){
// cross_point = alpha * p.a + (1-alpha) * p.b = beta * q.b + (1-beta) * q.a
// alpha * vp + beta * vq = vr
vec vp = p.a - p.b, vq = q.a - q.b, vr = q.a - p.b;
vec cpq = cross(vp,vq), cpr = cross(vp,vr), crq = cross(vr,vq);
// yz projection
if (sgn(cpq.x) != 0){
ld alpha = crq.x / cpq.x, beta = cpr.x / cpq.x;
// cross
if (sgn(abs(alpha * vp.x + beta * vq.x - vr.x)) == 0){
return 0;
}
// nejire
return 1;
}
// zx projection
if (sgn(cpq.y) != 0){
ld alpha = crq.y / cpq.y, beta = cpr.y / cpq.y;
// cross
if (sgn(abs(alpha * vp.y + beta * vq.y - vr.y)) == 0){
return 0;
}
// nejire
return 1;
}
// xy projection
if (sgn(cpq.z) != 0){
ld alpha = crq.z / cpq.z, beta = cpr.z / cpq.z;
// cross
if (sgn(abs(alpha * vp.z + beta * vq.z - vr.z)) == 0){
return 0;
}
// nejire
return 1;
}
// cpq == 0 -> parallel
// same
if (sgn(abs(cross(p.a - q.a, p.b - q.a))) == 0){
return 3;
}
// not same
return 2;
}
ld dist(const line &l, const vec &p){
return abs(p - proj(l,p));
}
vec cross_point(const line &p, const line &q){
assert(intersection(p,q) == 0);
// cross_point = alpha * p.a + (1-alpha) * p.b = beta * q.b + (1-beta) * q.a
// alpha * vp + beta * vq = vr
vec vp = p.a - p.b, vq = q.a - q.b, vr = q.a - p.b;
vec cpq = cross(vp,vq), cpr = cross(vp,vr), crq = cross(vr,vq);
auto res = [&](ld alpha){
return alpha * p.a + (1-alpha) * p.b;
};
// yz projection
if (sgn(cpq.x) != 0){
ld alpha = crq.x / cpq.x, beta = cpr.x / cpq.x;
// cross
if (sgn(abs(alpha * vp.x + beta * vq.x - vr.x)) == 0){
return res(alpha);
}
}
// zx projection
if (sgn(cpq.y) != 0){
ld alpha = crq.y / cpq.y, beta = cpr.y / cpq.y;
// cross
if (sgn(abs(alpha * vp.y + beta * vq.y - vr.y)) == 0){
return res(alpha);
}
}
// xy projection
if (sgn(cpq.z) != 0){
ld alpha = crq.z / cpq.z, beta = cpr.z / cpq.z;
// cross
if (sgn(abs(alpha * vp.z + beta * vq.z - vr.z)) == 0){
return res(alpha);
}
}
// NOT expected
return vec();
}
} // namespace lib