This documentation is automatically generated by online-judge-tools/verification-helper
#include "geometry3D/accurate/line.hpp"
#pragma once
#include "base_accurate.hpp"
#include "../../utility/rational.hpp"
namespace lib {
template<typename T>
struct Line {
Vec<T> a, b;
};
int intersection(const Line<rational> &p, const Line<rational> &q){
// cross_point = alpha * p.a + (1-alpha) * p.b = beta * q.b + (1-beta) * q.a
// alpha * vp + beta * vq = vr
using vec = Vec<rational>;
vec vp = p.a - p.b, vq = q.a - q.b, vr = q.a - p.b;
vec cpq = cross(vp,vq), cpr = cross(vp,vr), crq = cross(vr,vq);
// yz projection
if (cpq.x != 0){
rational alpha = crq.x / cpq.x, beta = cpr.x / cpq.x;
// cross
if (alpha * vp.x + beta * vq.x - vr.x == 0){
return 0;
}
// nejire
return 1;
}
// zx projection
if (cpq.y != 0){
rational alpha = crq.y / cpq.y, beta = cpr.y / cpq.y;
// cross
if (alpha * vp.y + beta * vq.y - vr.y == 0){
return 0;
}
// nejire
return 1;
}
// xy projection
if (cpq.z != 0){
rational alpha = crq.z / cpq.z, beta = cpr.z / cpq.z;
// cross
if (alpha * vp.z + beta * vq.z - vr.z == 0){
return 0;
}
// nejire
return 1;
}
// cpq == 0 -> parallel
// same
if (cross(p.a - q.a, p.b - q.a) == vec(0,0,0)){
return 3;
}
// not same
return 2;
}
Vec<rational> cross_point(const Line<rational> &p, const Line<rational> &q){
assert(intersection(p,q) == 0);
// cross_point = alpha * p.a + (1-alpha) * p.b = beta * q.b + (1-beta) * q.a
// alpha * vp + beta * vq = vr
using vec = Vec<rational>;
vec vp = p.a - p.b, vq = q.a - q.b, vr = q.a - p.b;
vec cpq = cross(vp,vq), cpr = cross(vp,vr), crq = cross(vr,vq);
auto res = [&](rational alpha){
return alpha * p.a + (1-alpha) * p.b;
};
// yz projection
if (cpq.x != 0){
rational alpha = crq.x / cpq.x, beta = cpr.x / cpq.x;
// cross
if (alpha * vp.x + beta * vq.x - vr.x == 0){
return res(alpha);
}
}
// zx projection
if (cpq.y != 0){
rational alpha = crq.y / cpq.y, beta = cpr.y / cpq.y;
// cross
if (alpha * vp.y + beta * vq.y - vr.y == 0){
return res(alpha);
}
}
// xy projection
if (cpq.z != 0){
rational alpha = crq.z / cpq.z, beta = cpr.z / cpq.z;
// cross
if (alpha * vp.z + beta * vq.z - vr.z == 0){
return res(alpha);
}
}
// NOT expected
return vec();
}
} // namespace lib
#line 2 "geometry3D/accurate/line.hpp"
#line 2 "geometry3D/accurate/base_accurate.hpp"
#line 2 "template/template.hpp"
#include <bits/stdc++.h>
#define rep(i, s, n) for (int i = (int)(s); i < (int)(n); i++)
#define rrep(i, s, n) for (int i = (int)(n)-1; i >= (int)(s); i--)
#define all(v) v.begin(), v.end()
using ll = long long;
using ld = long double;
using ull = unsigned long long;
template <typename T> bool chmin(T &a, const T &b) {
if (a <= b) return false;
a = b;
return true;
}
template <typename T> bool chmax(T &a, const T &b) {
if (a >= b) return false;
a = b;
return true;
}
namespace lib {
using namespace std;
} // namespace lib
// using namespace lib;
#line 2 "geometry3D/base_arbitary.hpp"
#line 4 "geometry3D/base_arbitary.hpp"
namespace lib {
template<typename T>
struct Vec {
T x, y, z;
Vec (T _x = 0, T _y = 0, T _z = 0) : x(_x), y(_y), z(_z) {}
Vec& operator*=(const T& a){
x *= a;
y *= a;
z *= a;
return *this;
}
Vec& operator/=(const T& a){
x /= a;
y /= a;
z /= a;
return *this;
}
Vec& operator+=(const Vec& rhs) {
x += rhs.x;
y += rhs.y;
z += rhs.z;
return *this;
}
Vec& operator-=(const Vec& rhs) {
x -= rhs.x;
y -= rhs.y;
z -= rhs.z;
return *this;
}
friend Vec operator+(const Vec& lhs, const Vec& rhs) {
return Vec(lhs) += rhs;
}
friend Vec operator-(const Vec& lhs, const Vec& rhs) {
return Vec(lhs) -= rhs;
}
friend Vec operator*(const Vec& lhs, const T& rhs) {
return Vec(lhs) *= rhs;
}
friend Vec operator*(const T& rhs, const Vec& lhs) {
return Vec(lhs) *= rhs;
}
friend Vec operator/(const Vec& lhs, const T& rhs) {
return Vec(lhs) /= rhs;
}
friend std::ostream &operator<<(std::ostream &os,const Vec&r) {
return os << "(" << r.x << "," << r.y << "," << r.z << ")";
}
};
};
#line 5 "geometry3D/accurate/base_accurate.hpp"
namespace lib {
template<typename T>
bool operator==(const Vec<T>& lhs, const Vec<T>& rhs) {
return lhs.x == rhs.x && lhs.y == rhs.y && lhs.z == rhs.z;
}
template<typename T>
T dot(const Vec<T> &a, const Vec<T> &b){
return a.x*b.x + a.y*b.y + a.z*b.z;
}
template<typename T>
Vec<T> cross(const Vec<T> &a, const Vec<T> &b){
return Vec(a.y*b.z-a.z*b.y, a.z*b.x-a.x*b.z, a.x*b.y-a.y*b.x);
}
template<typename T>
T norm(const Vec<T> &a){
return a.x*a.x+a.y*a.y+a.z*a.z;
}
} // namespace lib
#line 2 "utility/rational.hpp"
#line 4 "utility/rational.hpp"
namespace lib {
struct rational {
rational() : p(0), q(1) {}
rational(ll n) : p(n), q(1) {}
rational(ll n, ll m) {
assert(m != 0);
if (m < 0) n = -n, m = -m;
ll g = gcd(n, m);
p = n / g;
q = m / g;
}
explicit operator const ld () const { return ld(p) / ld(q); }
rational& operator+=(const rational& rhs){
ll g = gcd(q, rhs.q);
ll np = rhs.q / g * p + q / g * rhs.p;
ll nq = q / g * rhs.q;
ll ng = gcd(np, nq);
p = np / ng, q = nq / ng;
return *this;
}
rational& operator-=(const rational& rhs) {
(*this) += rational(-rhs.p, rhs.q);
return *this;
}
rational& operator*=(const rational& rhs) {
ll g1 = gcd(q, rhs.p), g2 = gcd(p, rhs.q);
ll np = p / g2 * rhs.p / g1;
ll nq = q / g1 * rhs.q / g2;
p = np, q = nq;
return *this;
}
rational& operator/=(const rational& rhs) {
(*this) *= rational(rhs.q, rhs.p);
return *this;
}
rational operator+() const {
return *this;
}
rational operator-() const {
return rational() - *this;
}
friend rational operator+(const rational& lhs, const rational& rhs) {
return rational(lhs) += rhs;
}
friend rational operator-(const rational& lhs, const rational& rhs) {
return rational(lhs) -= rhs;
}
friend rational operator*(const rational& lhs, const rational& rhs) {
return rational(lhs) *= rhs;
}
friend rational operator/(const rational& lhs, const rational& rhs) {
return rational(lhs) /= rhs;
}
friend bool operator==(const rational& lhs, const rational& rhs) {
return lhs.p == rhs.p && lhs.q == rhs.q;
}
friend bool operator!=(const rational& lhs, const rational& rhs) {
return lhs.p != rhs.p || lhs.q != rhs.q;
}
friend bool operator<(const rational lhs, const rational rhs) {
return less_than(lhs, rhs);
}
friend bool operator>(const rational lhs, const rational rhs) {
return less_than(rhs, lhs);
}
friend bool operator<=(const rational lhs, const rational rhs) {
return lhs == rhs || lhs < rhs;
}
friend bool operator>=(const rational lhs, const rational rhs) {
return lhs == rhs || lhs > rhs;
}
friend std::ostream& operator<<(std::ostream& os, const rational& r) {
return os << r.p << " / " << r.q;
}
std::pair<ll,ll> val() const {
return {p, q};
}
private:
ll p, q;
static bool less_than(rational lhs, rational rhs) {
__int128_t lv = __int128_t(lhs.p) * __int128_t(rhs.q);
__int128_t rv = __int128_t(lhs.q) * __int128_t(rhs.p);
return lv < rv;
}
};
} // namespace lib
#line 5 "geometry3D/accurate/line.hpp"
namespace lib {
template<typename T>
struct Line {
Vec<T> a, b;
};
int intersection(const Line<rational> &p, const Line<rational> &q){
// cross_point = alpha * p.a + (1-alpha) * p.b = beta * q.b + (1-beta) * q.a
// alpha * vp + beta * vq = vr
using vec = Vec<rational>;
vec vp = p.a - p.b, vq = q.a - q.b, vr = q.a - p.b;
vec cpq = cross(vp,vq), cpr = cross(vp,vr), crq = cross(vr,vq);
// yz projection
if (cpq.x != 0){
rational alpha = crq.x / cpq.x, beta = cpr.x / cpq.x;
// cross
if (alpha * vp.x + beta * vq.x - vr.x == 0){
return 0;
}
// nejire
return 1;
}
// zx projection
if (cpq.y != 0){
rational alpha = crq.y / cpq.y, beta = cpr.y / cpq.y;
// cross
if (alpha * vp.y + beta * vq.y - vr.y == 0){
return 0;
}
// nejire
return 1;
}
// xy projection
if (cpq.z != 0){
rational alpha = crq.z / cpq.z, beta = cpr.z / cpq.z;
// cross
if (alpha * vp.z + beta * vq.z - vr.z == 0){
return 0;
}
// nejire
return 1;
}
// cpq == 0 -> parallel
// same
if (cross(p.a - q.a, p.b - q.a) == vec(0,0,0)){
return 3;
}
// not same
return 2;
}
Vec<rational> cross_point(const Line<rational> &p, const Line<rational> &q){
assert(intersection(p,q) == 0);
// cross_point = alpha * p.a + (1-alpha) * p.b = beta * q.b + (1-beta) * q.a
// alpha * vp + beta * vq = vr
using vec = Vec<rational>;
vec vp = p.a - p.b, vq = q.a - q.b, vr = q.a - p.b;
vec cpq = cross(vp,vq), cpr = cross(vp,vr), crq = cross(vr,vq);
auto res = [&](rational alpha){
return alpha * p.a + (1-alpha) * p.b;
};
// yz projection
if (cpq.x != 0){
rational alpha = crq.x / cpq.x, beta = cpr.x / cpq.x;
// cross
if (alpha * vp.x + beta * vq.x - vr.x == 0){
return res(alpha);
}
}
// zx projection
if (cpq.y != 0){
rational alpha = crq.y / cpq.y, beta = cpr.y / cpq.y;
// cross
if (alpha * vp.y + beta * vq.y - vr.y == 0){
return res(alpha);
}
}
// xy projection
if (cpq.z != 0){
rational alpha = crq.z / cpq.z, beta = cpr.z / cpq.z;
// cross
if (alpha * vp.z + beta * vq.z - vr.z == 0){
return res(alpha);
}
}
// NOT expected
return vec();
}
} // namespace lib