This documentation is automatically generated by online-judge-tools/verification-helper
#include "convolution/subset_convolution.hpp"
長さ $2^N$ の整数列 $a$ と $b$ について、 $c_k = \sum_{i\& j=0, i|j=k} a_i b_j$ を求める。 $O(N^2 2^N)$
#pragma once
#include "../template/template.hpp"
#include "../math/ranked_subset_transform.hpp"
namespace lib {
template <class T, int LIM = 20>
std::vector<T> subset_convolution(const std::vector<T> &a,
const std::vector<T> &b) {
auto ra = ranked_zeta<T, LIM>(a);
auto rb = ranked_zeta<T, LIM>(b);
int n = std::bit_width(a.size()) - 1;
for (int s = (1 << n) - 1; s >= 0; s--) {
auto &f = ra[s];
const auto &g = rb[s];
for (int d = n; d >= 0; d--) {
T x = 0;
for (int i = 0; i <= d; i++) {
x += f[i] * g[d - i];
}
f[d] = x;
}
}
return ranked_mobius<T, LIM>(ra);
}
} // namespace ebi
#line 2 "convolution/subset_convolution.hpp"
#line 2 "template/template.hpp"
#include <bits/stdc++.h>
#define rep(i, s, n) for (int i = (int)(s); i < (int)(n); i++)
#define rrep(i, s, n) for (int i = (int)(n)-1; i >= (int)(s); i--)
#define all(v) v.begin(), v.end()
using ll = long long;
using ld = long double;
using ull = unsigned long long;
template <typename T> bool chmin(T &a, const T &b) {
if (a <= b) return false;
a = b;
return true;
}
template <typename T> bool chmax(T &a, const T &b) {
if (a >= b) return false;
a = b;
return true;
}
namespace lib {
using namespace std;
} // namespace lib
// using namespace lib;
#line 2 "math/ranked_subset_transform.hpp"
#line 4 "math/ranked_subset_transform.hpp"
namespace lib {
template <class T, int LIM = 20>
std::vector<std::array<T, LIM + 1>> ranked_zeta(const std::vector<T> &f) {
int n = std::bit_width(f.size()) - 1;
assert(n <= LIM);
assert((int)f.size() == (1 << n));
std::vector<std::array<T, LIM + 1>> rf(1 << n);
for (int s = 0; s < (1 << n); s++)
rf[s][std::popcount((unsigned int)(s))] = f[s];
for (int i = 0; i < n; i++) {
int w = 1 << i;
for (int p = 0; p < (1 << n); p += 2 * w) {
for (int s = p; s < p + w; s++) {
int t = s | (1 << i);
for (int d = 0; d <= n; d++) rf[t][d] += rf[s][d];
}
}
}
return rf;
}
template <class T, int LIM = 20>
std::vector<T> ranked_mobius(std::vector<std::array<T, LIM + 1>> rf) {
int n = std::bit_width(rf.size()) - 1;
assert((int)rf.size() == (1 << n));
for (int i = 0; i < n; i++) {
int w = 1 << i;
for (int p = 0; p < (1 << n); p += 2 * w) {
for (int s = p; s < p + w; s++) {
int t = s | (1 << i);
for (int d = 0; d <= n; d++) rf[t][d] -= rf[s][d];
}
}
}
std::vector<T> f(1 << n);
for (int s = 0; s < (1 << n); s++) {
f[s] = rf[s][std::popcount((unsigned int)(s))];
}
return f;
}
} // namespace ebi
#line 5 "convolution/subset_convolution.hpp"
namespace lib {
template <class T, int LIM = 20>
std::vector<T> subset_convolution(const std::vector<T> &a,
const std::vector<T> &b) {
auto ra = ranked_zeta<T, LIM>(a);
auto rb = ranked_zeta<T, LIM>(b);
int n = std::bit_width(a.size()) - 1;
for (int s = (1 << n) - 1; s >= 0; s--) {
auto &f = ra[s];
const auto &g = rb[s];
for (int d = n; d >= 0; d--) {
T x = 0;
for (int i = 0; i <= d; i++) {
x += f[i] * g[d - i];
}
f[d] = x;
}
}
return ranked_mobius<T, LIM>(ra);
}
} // namespace ebi