This documentation is automatically generated by online-judge-tools/verification-helper
#include "tree/tree_hash.hpp"
木を与えて重心のハッシュを返す。木の同型判定に活用できる。
#pragma once
#include <cassert>
#include "../graph/base.hpp"
#include "../tree/centroid.hpp"
#include "../tree/subtree_hash.hpp"
namespace ebi {
template <class T> std::vector<modint61> tree_hash(const Graph<T> &tree) {
subtree_hash hash(tree);
auto centroid = get_centroid(tree);
if (centroid.size() == 1) centroid.emplace_back(centroid[0]);
assert(centroid.size() == 2);
std::vector<modint61> hs;
for (auto c : centroid) {
hs.emplace_back(hash.get(c));
}
if (hs[0] > hs[1]) std::swap(hs[0], hs[1]);
return hs;
}
} // namespace ebi
#line 2 "tree/tree_hash.hpp"
#include <cassert>
#line 2 "graph/base.hpp"
#line 4 "graph/base.hpp"
#include <iostream>
#include <ranges>
#include <vector>
#line 2 "data_structure/simple_csr.hpp"
#line 4 "data_structure/simple_csr.hpp"
#include <utility>
#line 6 "data_structure/simple_csr.hpp"
namespace ebi {
template <class E> struct simple_csr {
simple_csr() = default;
simple_csr(int n, const std::vector<std::pair<int, E>>& elements)
: start(n + 1, 0), elist(elements.size()) {
for (auto e : elements) {
start[e.first + 1]++;
}
for (auto i : std::views::iota(0, n)) {
start[i + 1] += start[i];
}
auto counter = start;
for (auto [i, e] : elements) {
elist[counter[i]++] = e;
}
}
simple_csr(const std::vector<std::vector<E>>& es)
: start(es.size() + 1, 0) {
int n = es.size();
for (auto i : std::views::iota(0, n)) {
start[i + 1] = (int)es[i].size() + start[i];
}
elist.resize(start.back());
for (auto i : std::views::iota(0, n)) {
std::copy(es[i].begin(), es[i].end(), elist.begin() + start[i]);
}
}
int size() const {
return (int)start.size() - 1;
}
const auto operator[](int i) const {
return std::ranges::subrange(elist.begin() + start[i],
elist.begin() + start[i + 1]);
}
auto operator[](int i) {
return std::ranges::subrange(elist.begin() + start[i],
elist.begin() + start[i + 1]);
}
const auto operator()(int i, int l, int r) const {
return std::ranges::subrange(elist.begin() + start[i] + l,
elist.begin() + start[i + 1] + r);
}
auto operator()(int i, int l, int r) {
return std::ranges::subrange(elist.begin() + start[i] + l,
elist.begin() + start[i + 1] + r);
}
private:
std::vector<int> start;
std::vector<E> elist;
};
} // namespace ebi
#line 9 "graph/base.hpp"
namespace ebi {
template <class T> struct Edge {
int from, to;
T cost;
int id;
};
template <class E> struct Graph {
using cost_type = E;
using edge_type = Edge<cost_type>;
Graph(int n_) : n(n_) {}
Graph() = default;
void add_edge(int u, int v, cost_type c) {
assert(!prepared && u < n && v < n);
buff.emplace_back(u, edge_type{u, v, c, m});
edges.emplace_back(edge_type{u, v, c, m++});
}
void add_undirected_edge(int u, int v, cost_type c) {
assert(!prepared && u < n && v < n);
buff.emplace_back(u, edge_type{u, v, c, m});
buff.emplace_back(v, edge_type{v, u, c, m});
edges.emplace_back(edge_type{u, v, c, m});
m++;
}
void read_tree(int offset = 1, bool is_weighted = false) {
read_graph(n - 1, offset, false, is_weighted);
}
void read_parents(int offset = 1) {
for (auto i : std::views::iota(1, n)) {
int p;
std::cin >> p;
p -= offset;
add_undirected_edge(p, i, 1);
}
build();
}
void read_graph(int e, int offset = 1, bool is_directed = false,
bool is_weighted = false) {
for (int i = 0; i < e; i++) {
int u, v;
std::cin >> u >> v;
u -= offset;
v -= offset;
if (is_weighted) {
cost_type c;
std::cin >> c;
if (is_directed) {
add_edge(u, v, c);
} else {
add_undirected_edge(u, v, c);
}
} else {
if (is_directed) {
add_edge(u, v, 1);
} else {
add_undirected_edge(u, v, 1);
}
}
}
build();
}
void build() {
assert(!prepared);
csr = simple_csr<edge_type>(n, buff);
buff.clear();
prepared = true;
}
int size() const {
return n;
}
int node_number() const {
return n;
}
int edge_number() const {
return m;
}
edge_type get_edge(int i) const {
assert(prepared);
return edges[i];
}
std::vector<edge_type> get_edges() const {
assert(prepared);
return edges;
}
const auto operator[](int i) const {
assert(prepared);
return csr[i];
}
auto operator[](int i) {
assert(prepared);
return csr[i];
}
private:
int n, m = 0;
std::vector<std::pair<int, edge_type>> buff;
std::vector<edge_type> edges;
simple_csr<edge_type> csr;
bool prepared = false;
};
} // namespace ebi
#line 2 "tree/centroid.hpp"
#line 4 "tree/centroid.hpp"
namespace ebi {
template <class T> std::vector<int> get_centroid(const Graph<T> &tree) {
int n = tree.node_number();
std::vector<int> sz(n, 1);
std::vector<int> centroid;
auto dfs = [&](auto &&self, int v, int par = -1) -> void {
bool is_centroid = true;
for (auto e : tree[v]) {
if (e.to == par) continue;
self(self, e.to, v);
if (sz[e.to] > n / 2) is_centroid = false;
sz[v] += sz[e.to];
}
if (n - sz[v] > n / 2) is_centroid = false;
if (is_centroid) centroid.emplace_back(v);
};
dfs(dfs, 0);
return centroid;
}
} // namespace ebi
#line 2 "tree/subtree_hash.hpp"
#line 4 "tree/subtree_hash.hpp"
#line 2 "modint/modint61.hpp"
#line 4 "modint/modint61.hpp"
#include <cstdint>
#line 6 "modint/modint61.hpp"
#line 2 "modint/base.hpp"
#include <concepts>
#line 6 "modint/base.hpp"
namespace ebi {
template <class T>
concept Modint = requires(T a, T b) {
a + b;
a - b;
a * b;
a / b;
a.inv();
a.val();
a.pow(std::declval<long long>());
T::mod();
};
template <Modint mint> std::istream &operator>>(std::istream &os, mint &a) {
long long x;
os >> x;
a = x;
return os;
}
template <Modint mint>
std::ostream &operator<<(std::ostream &os, const mint &a) {
return os << a.val();
}
} // namespace ebi
#line 8 "modint/modint61.hpp"
namespace ebi {
struct modint61 {
private:
using mint = modint61;
using u64 = std::uint64_t;
constexpr static u64 m = (1ull << 61) - 1;
constexpr static u64 MASK31 = (1ull << 31) - 1;
constexpr static u64 MASK30 = (1ull << 30) - 1;
public:
constexpr static u64 mod() {
return m;
}
constexpr modint61() : _v(0) {}
constexpr modint61(long long v) {
v %= (long long)umod();
if (v < 0) v += (long long)umod();
_v = u64(v);
}
constexpr u64 val() const {
return _v;
}
constexpr u64 value() const {
return val();
}
constexpr mint &operator++() {
_v++;
if (_v == umod()) _v = 0;
return *this;
}
constexpr mint &operator--() {
if (_v == 0) _v = umod();
_v--;
return *this;
}
constexpr mint &operator+=(const mint &rhs) {
_v += rhs._v;
_v = safe_mod(_v);
return *this;
}
constexpr mint &operator-=(const mint &rhs) {
if (_v < rhs._v) _v += umod();
assert(_v >= rhs._v);
_v -= rhs._v;
return *this;
}
constexpr mint &operator*=(const mint &rhs) {
u64 au = _v >> 31, ad = _v & MASK31;
u64 bu = rhs._v >> 31, bd = rhs._v & MASK31;
u64 mid = ad * bu + au * bd;
u64 midu = mid >> 30;
u64 midd = mid & MASK30;
_v = (au * bu * 2 + midu + (midd << 31) + ad * bd);
_v = safe_mod(_v);
return *this;
}
constexpr mint &operator/=(const mint &rhs) {
return *this *= rhs.inv();
}
constexpr mint pow(long long n) const {
assert(0 <= n);
mint x = *this, res = 1;
while (n) {
if (n & 1) res *= x;
x *= x;
n >>= 1;
}
return res;
}
constexpr mint inv() const {
assert(_v);
return pow(umod() - 2);
}
friend mint operator+(const mint &lhs, const mint &rhs) {
return mint(lhs) += rhs;
}
friend mint operator-(const mint &lhs, const mint &rhs) {
return mint(lhs) -= rhs;
}
friend mint operator*(const mint &lhs, const mint &rhs) {
return mint(lhs) *= rhs;
}
friend mint operator/(const mint &lhs, const mint &rhs) {
return mint(lhs) /= rhs;
}
friend bool operator==(const mint &lhs, const mint &rhs) {
return lhs.val() == rhs.val();
}
friend bool operator!=(const mint &lhs, const mint &rhs) {
return !(lhs == rhs);
}
friend bool operator<(const mint &lhs, const mint &rhs) {
return lhs._v < rhs._v;
}
friend bool operator>(const mint &lhs, const mint &rhs) {
return rhs < lhs;
}
private:
u64 _v = 0;
constexpr static u64 umod() {
return m;
}
constexpr u64 safe_mod(const u64 &a) {
u64 au = a >> 61;
u64 ad = a & umod();
u64 res = au + ad;
if (res >= umod()) res -= umod();
return res;
}
};
} // namespace ebi
#line 2 "tree/rerooting.hpp"
#line 6 "tree/rerooting.hpp"
#line 2 "tree/heavy_light_decomposition.hpp"
#include <algorithm>
#line 6 "tree/heavy_light_decomposition.hpp"
#line 8 "tree/heavy_light_decomposition.hpp"
namespace ebi {
template <class T> struct heavy_light_decomposition {
private:
void dfs_sz(int v) {
for (auto &e : g[v]) {
if (e.to == par[v]) continue;
par[e.to] = v;
depth_[e.to] = depth_[v] + 1;
dist[e.to] = dist[v] + e.cost;
dfs_sz(e.to);
sz[v] += sz[e.to];
if (sz[e.to] > sz[g[v][0].to] || g[v][0].to == par[v])
std::swap(e, g[v][0]);
}
}
void dfs_hld(int v) {
in[v] = num++;
rev[in[v]] = v;
for (auto e : g[v]) {
if (e.to == par[v]) continue;
nxt[e.to] = (e.to == g[v][0].to ? nxt[v] : e.to);
dfs_hld(e.to);
}
out[v] = num;
}
// [u, v) パスの取得 (v は u の祖先)
std::vector<std::pair<int, int>> ascend(int u, int v) const {
std::vector<std::pair<int, int>> res;
while (nxt[u] != nxt[v]) {
res.emplace_back(in[u], in[nxt[u]]);
u = par[nxt[u]];
}
if (u != v) res.emplace_back(in[u], in[v] + 1);
return res;
}
// (u, v] パスの取得 (u は v の祖先)
std::vector<std::pair<int, int>> descend(int u, int v) const {
if (u == v) return {};
if (nxt[u] == nxt[v]) return {{in[u] + 1, in[v]}};
auto res = descend(u, par[nxt[v]]);
res.emplace_back(in[nxt[v]], in[v]);
return res;
}
public:
heavy_light_decomposition(const Graph<T> &gh, int root_ = 0)
: n(gh.size()),
root(root_),
g(gh),
sz(n, 1),
in(n),
out(n),
nxt(n),
par(n, -1),
depth_(n, 0),
rev(n),
dist(n, 0) {
nxt[root] = root;
dfs_sz(root);
dfs_hld(root);
}
int idx(int u) const {
return in[u];
}
int rev_idx(int i) const {
return rev[i];
}
int la(int v, int k) const {
while (1) {
int u = nxt[v];
if (in[u] <= in[v] - k) return rev[in[v] - k];
k -= in[v] - in[u] + 1;
v = par[u];
}
}
int lca(int u, int v) const {
while (nxt[u] != nxt[v]) {
if (in[u] < in[v]) std::swap(u, v);
u = par[nxt[u]];
}
return depth_[u] < depth_[v] ? u : v;
}
int jump(int s, int t, int i) const {
if (i == 0) return s;
int l = lca(s, t);
int d = depth_[s] + depth_[t] - depth_[l] * 2;
if (d < i) return -1;
if (depth_[s] - depth_[l] >= i) return la(s, i);
i = d - i;
return la(t, i);
}
std::vector<int> path(int s, int t) const {
int l = lca(s, t);
std::vector<int> a, b;
for (; s != l; s = par[s]) a.emplace_back(s);
for (; t != l; t = par[t]) b.emplace_back(t);
a.emplace_back(l);
std::reverse(b.begin(), b.end());
a.insert(a.end(), b.begin(), b.end());
return a;
}
int root_of_heavy_path(int u) const {
return nxt[u];
}
int parent(int u) const {
return par[u];
}
T distance(int u, int v) const {
return dist[u] + dist[v] - 2 * dist[lca(u, v)];
}
T distance_from_root(int v) const {
return dist[v];
}
T depth(int v) const {
return depth_[v];
}
bool at_path(int u, int v, int s) const {
return distance(u, v) == distance(u, s) + distance(s, v);
}
std::pair<int, int> subtree_section(int v) const {
return {in[v], out[v]};
}
bool is_subtree(int u, int v) const {
return in[u] <= in[v] && in[v] < out[u];
}
template <class F>
void path_noncommutative_query(int u, int v, bool vertex,
const F &f) const {
int l = lca(u, v);
for (auto [a, b] : ascend(u, l)) f(a + 1, b);
if (vertex) f(in[l], in[l] + 1);
for (auto [a, b] : descend(l, v)) f(a, b + 1);
}
std::vector<std::pair<int, int>> path_sections(int u, int v,
bool vertex) const {
int l = lca(u, v);
std::vector<std::pair<int, int>> sections;
for (auto [a, b] : ascend(u, l)) sections.emplace_back(a + 1, b);
if (vertex) sections.emplace_back(in[l], in[l] + 1);
for (auto [a, b] : descend(l, v)) sections.emplace_back(a, b + 1);
return sections;
}
template <class F>
int max_path(int u, int v, bool vertex, F binary_search) const {
int prev = -1;
int l = lca(u, v);
for (auto [a, b] : ascend(u, l)) {
a++;
int m = binary_search(a, b);
if (m == b) {
prev = rev[b];
} else {
return (m == a ? prev : rev[m]);
}
}
if (vertex) {
int m = binary_search(in[l], in[l] + 1);
if (m == in[l]) {
return prev;
} else {
prev = l;
}
}
for (auto [a, b] : descend(l, v)) {
b++;
int m = binary_search(a, b);
if (m == b) {
prev = rev[b - 1];
} else {
return m == a ? prev : rev[m - 1];
}
}
return v;
}
template <class F> void subtree_query(int u, bool vertex, const F &f) {
f(in[u] + int(!vertex), out[u]);
}
const std::vector<int> &dfs_order() const {
return rev;
}
template <class ADD, class QUERY, class CLEAR, class RESET>
void dsu_on_tree(const ADD &add, const QUERY &query, const CLEAR &clear,
const RESET &reset) const;
std::vector<std::pair<int, int>> lca_based_auxiliary_tree_dfs_order(
std::vector<int> vs) const;
std::pair<std::vector<int>, Graph<T>> lca_based_auxiliary_tree(
std::vector<int> vs) const;
private:
int n, root;
Graph<T> g;
std::vector<int> sz, in, out, nxt, par, depth_, rev;
std::vector<T> dist;
int num = 0;
};
} // namespace ebi
#line 9 "tree/rerooting.hpp"
namespace ebi {
template <class T, class V> struct rerooting_dp {
template <class MERGE, class PUT_EDGE, class PUT_ROOT>
rerooting_dp(const Graph<T> &tree, const V e, const MERGE &merge,
const PUT_EDGE &put_edge, const PUT_ROOT &put_root)
: n(tree.node_number()),
hld(tree),
full_tree_dp(n, e),
child_dp(n, e),
parent_dp(n, e) {
auto dfs_sub = [&](auto &&self, int v, int par = -1) -> void {
for (const auto &edge : tree[v]) {
if (edge.to == par) continue;
self(self, edge.to, v);
child_dp[v] =
merge(child_dp[v], put_edge(edge, child_dp[edge.to]));
}
child_dp[v] = put_root(v, child_dp[v]);
};
dfs_sub(dfs_sub, 0);
auto dfs_all = [&](auto &&self, int v, int par = -1) -> void {
std::vector<int> ch;
std::vector<V> dp;
V ret = e;
for (const auto &edge : tree[v]) {
if (edge.to == par) {
ret = put_edge(edge, parent_dp[v]);
} else {
ch.emplace_back(edge.to);
dp.emplace_back(put_edge(edge, child_dp[edge.to]));
}
}
int sz = (int)ch.size();
if (ch.empty()) {
full_tree_dp[v] = put_root(v, ret);
return;
}
std::vector<V> lcum(sz, ret);
for (int i = 0; i < sz - 1; i++) {
lcum[i + 1] = merge(lcum[i], dp[i]);
}
V rcum = e;
for (int i = sz - 1; i >= 0; i--) {
parent_dp[ch[i]] = put_root(v, merge(lcum[i], rcum));
rcum = merge(rcum, dp[i]);
}
for (int i = 0; i < sz; i++) {
self(self, ch[i], v);
}
full_tree_dp[v] = put_root(v, merge(rcum, ret));
};
dfs_all(dfs_all, 0);
}
V get(int v) const {
return get(v, v);
}
V get(int v, int root) const {
if (root == v) return full_tree_dp[v];
if (!hld.is_subtree(v, root)) {
return child_dp[v];
}
return parent_dp[hld.jump(v, root, 1)];
}
std::vector<V> get_full_dp() const {
return full_tree_dp;
}
private:
int n;
heavy_light_decomposition<T> hld;
std::vector<V> full_tree_dp;
std::vector<V> child_dp;
std::vector<V> parent_dp;
};
} // namespace ebi
#line 2 "utility/random_number_generator.hpp"
#line 5 "utility/random_number_generator.hpp"
#include <numeric>
#include <random>
#line 8 "utility/random_number_generator.hpp"
namespace ebi {
struct random_number_generator {
random_number_generator(int seed = -1) {
if (seed < 0) seed = rnd();
mt.seed(seed);
}
void set_seed(int seed) {
mt.seed(seed);
}
template <class T> T get(T a, T b) {
std::uniform_int_distribution<T> dist(a, b - 1);
return dist(mt);
}
std::vector<int> get_permutation(int n) {
std::vector<int> p(n);
std::iota(p.begin(), p.end(), 0);
std::shuffle(p.begin(), p.end(), mt);
return p;
}
private:
std::mt19937_64 mt;
std::random_device rnd;
};
} // namespace ebi
#line 9 "tree/subtree_hash.hpp"
namespace ebi {
template <class T> struct subtree_hash {
private:
using V = std::pair<int, modint61>;
static modint61 hash_base(int k) {
static std::vector<modint61> r;
static random_number_generator rng;
while ((int)r.size() <= k) {
r.emplace_back(rng.get<std::uint64_t>(0, modint61::mod()));
}
return r[k];
}
static auto merge() {
return [&](V a, V b) -> V {
return {std::max(a.first, b.first), a.second * b.second};
};
}
static auto put_edge() {
return [&](Graph<T>::edge_type, V a) -> V {
return {a.first + 1, a.second};
};
}
static auto put_root() {
return [&](int, V a) -> V {
return {a.first, a.second + hash_base(a.first)};
};
}
public:
subtree_hash(const Graph<T> &tree)
: dp(tree, V{0, 1}, merge(), put_edge(), put_root()) {}
modint61 get(int v) const {
return dp.get(v).second;
}
modint61 get(int v, int root) {
return dp.get(v, root).second;
}
private:
rerooting_dp<T, V> dp;
};
} // namespace ebi
#line 8 "tree/tree_hash.hpp"
namespace ebi {
template <class T> std::vector<modint61> tree_hash(const Graph<T> &tree) {
subtree_hash hash(tree);
auto centroid = get_centroid(tree);
if (centroid.size() == 1) centroid.emplace_back(centroid[0]);
assert(centroid.size() == 2);
std::vector<modint61> hs;
for (auto c : centroid) {
hs.emplace_back(hash.get(c));
}
if (hs[0] > hs[1]) std::swap(hs[0], hs[1]);
return hs;
}
} // namespace ebi