This documentation is automatically generated by online-judge-tools/verification-helper
#include "tree/lowest_common_ancestor.hpp"
根付き木の最小共通祖先を、構築 $O(N\log N)$ / クエリ $O(1)$ で求める。
u
とv
の最小共通祖先を返す。 $O(1)$
u
とv
の距離を返す。
#pragma once
#include <vector>
#include "../data_structure/sparse_table.hpp"
#include "../graph/base.hpp"
namespace ebi {
namespace internal_lca {
std::pair<int, int> op(std::pair<int, int> a, std::pair<int, int> b) {
return a.second < b.second ? a : b;
}
} // namespace internal_lca
template <class T> struct lowest_common_ancestor {
public:
lowest_common_ancestor(const Graph<T> &gh, int root = 0)
: n(gh.size()), id(n), dist(n, 0) {
auto dfs = [&](auto &&self, int v, int par = -1, T d = 0) -> void {
id[v] = int(vs.size());
vs.emplace_back(v, d);
for (const auto &e : gh[v])
if (e.to != par) {
dist[e.to] = dist[v] + e.cost;
self(self, e.to, v, d + 1);
vs.emplace_back(v, d);
}
};
dfs(dfs, root);
st.build(vs);
}
int lca(int u, int v) {
int l = id[u], r = id[v];
if (r < l) std::swap(l, r);
return st.fold(l, r + 1).first;
}
T distance(int u, int v) {
int w = lca(u, v);
return dist[u] + dist[v] - 2 * dist[w];
}
private:
int n;
std::vector<int> id;
std::vector<T> dist;
std::vector<std::pair<int, int>> vs;
sparse_table<std::pair<int, int>, internal_lca::op> st;
};
} // namespace ebi
#line 2 "tree/lowest_common_ancestor.hpp"
#include <vector>
#line 2 "data_structure/sparse_table.hpp"
#line 4 "data_structure/sparse_table.hpp"
/*
reference: https://scrapbox.io/data-structures/Sparse_Table
*/
namespace ebi {
template <class Band, Band (*op)(Band, Band)> struct sparse_table {
public:
sparse_table() = default;
sparse_table(const std::vector<Band> &a) : n(a.size()) {
table = std::vector(std::__lg(n) + 1, std::vector<Band>(n));
for (int i = 0; i < n; i++) {
table[0][i] = a[i];
}
for (int k = 1; (1 << k) <= n; k++) {
for (int i = 0; i + (1 << k) <= n; i++) {
table[k][i] =
op(table[k - 1][i], table[k - 1][i + (1 << (k - 1))]);
}
}
}
void build(const std::vector<Band> &a) {
n = (int)a.size();
table = std::vector(std::__lg(n) + 1, std::vector<Band>(n));
for (int i = 0; i < n; i++) {
table[0][i] = a[i];
}
for (int k = 1; (1 << k) <= n; k++) {
for (int i = 0; i + (1 << k) <= n; i++) {
table[k][i] =
op(table[k - 1][i], table[k - 1][i + (1 << (k - 1))]);
}
}
}
// [l, r)
Band fold(int l, int r) {
int k = std::__lg(r - l);
return op(table[k][l], table[k][r - (1 << k)]);
}
private:
int n;
std::vector<std::vector<Band>> table;
};
} // namespace ebi
#line 2 "graph/base.hpp"
#include <cassert>
#include <iostream>
#include <ranges>
#line 7 "graph/base.hpp"
#line 2 "data_structure/simple_csr.hpp"
#line 4 "data_structure/simple_csr.hpp"
#include <utility>
#line 6 "data_structure/simple_csr.hpp"
namespace ebi {
template <class E> struct simple_csr {
simple_csr() = default;
simple_csr(int n, const std::vector<std::pair<int, E>>& elements)
: start(n + 1, 0), elist(elements.size()) {
for (auto e : elements) {
start[e.first + 1]++;
}
for (auto i : std::views::iota(0, n)) {
start[i + 1] += start[i];
}
auto counter = start;
for (auto [i, e] : elements) {
elist[counter[i]++] = e;
}
}
simple_csr(const std::vector<std::vector<E>>& es)
: start(es.size() + 1, 0) {
int n = es.size();
for (auto i : std::views::iota(0, n)) {
start[i + 1] = (int)es[i].size() + start[i];
}
elist.resize(start.back());
for (auto i : std::views::iota(0, n)) {
std::copy(es[i].begin(), es[i].end(), elist.begin() + start[i]);
}
}
int size() const {
return (int)start.size() - 1;
}
const auto operator[](int i) const {
return std::ranges::subrange(elist.begin() + start[i],
elist.begin() + start[i + 1]);
}
auto operator[](int i) {
return std::ranges::subrange(elist.begin() + start[i],
elist.begin() + start[i + 1]);
}
const auto operator()(int i, int l, int r) const {
return std::ranges::subrange(elist.begin() + start[i] + l,
elist.begin() + start[i + 1] + r);
}
auto operator()(int i, int l, int r) {
return std::ranges::subrange(elist.begin() + start[i] + l,
elist.begin() + start[i + 1] + r);
}
private:
std::vector<int> start;
std::vector<E> elist;
};
} // namespace ebi
#line 9 "graph/base.hpp"
namespace ebi {
template <class T> struct Edge {
int from, to;
T cost;
int id;
};
template <class E> struct Graph {
using cost_type = E;
using edge_type = Edge<cost_type>;
Graph(int n_) : n(n_) {}
Graph() = default;
void add_edge(int u, int v, cost_type c) {
assert(!prepared && u < n && v < n);
buff.emplace_back(u, edge_type{u, v, c, m});
edges.emplace_back(edge_type{u, v, c, m++});
}
void add_undirected_edge(int u, int v, cost_type c) {
assert(!prepared && u < n && v < n);
buff.emplace_back(u, edge_type{u, v, c, m});
buff.emplace_back(v, edge_type{v, u, c, m});
edges.emplace_back(edge_type{u, v, c, m});
m++;
}
void read_tree(int offset = 1, bool is_weighted = false) {
read_graph(n - 1, offset, false, is_weighted);
}
void read_parents(int offset = 1) {
for (auto i : std::views::iota(1, n)) {
int p;
std::cin >> p;
p -= offset;
add_undirected_edge(p, i, 1);
}
build();
}
void read_graph(int e, int offset = 1, bool is_directed = false,
bool is_weighted = false) {
for (int i = 0; i < e; i++) {
int u, v;
std::cin >> u >> v;
u -= offset;
v -= offset;
if (is_weighted) {
cost_type c;
std::cin >> c;
if (is_directed) {
add_edge(u, v, c);
} else {
add_undirected_edge(u, v, c);
}
} else {
if (is_directed) {
add_edge(u, v, 1);
} else {
add_undirected_edge(u, v, 1);
}
}
}
build();
}
void build() {
assert(!prepared);
csr = simple_csr<edge_type>(n, buff);
buff.clear();
prepared = true;
}
int size() const {
return n;
}
int node_number() const {
return n;
}
int edge_number() const {
return m;
}
edge_type get_edge(int i) const {
assert(prepared);
return edges[i];
}
std::vector<edge_type> get_edges() const {
assert(prepared);
return edges;
}
const auto operator[](int i) const {
assert(prepared);
return csr[i];
}
auto operator[](int i) {
assert(prepared);
return csr[i];
}
private:
int n, m = 0;
std::vector<std::pair<int, edge_type>> buff;
std::vector<edge_type> edges;
simple_csr<edge_type> csr;
bool prepared = false;
};
} // namespace ebi
#line 7 "tree/lowest_common_ancestor.hpp"
namespace ebi {
namespace internal_lca {
std::pair<int, int> op(std::pair<int, int> a, std::pair<int, int> b) {
return a.second < b.second ? a : b;
}
} // namespace internal_lca
template <class T> struct lowest_common_ancestor {
public:
lowest_common_ancestor(const Graph<T> &gh, int root = 0)
: n(gh.size()), id(n), dist(n, 0) {
auto dfs = [&](auto &&self, int v, int par = -1, T d = 0) -> void {
id[v] = int(vs.size());
vs.emplace_back(v, d);
for (const auto &e : gh[v])
if (e.to != par) {
dist[e.to] = dist[v] + e.cost;
self(self, e.to, v, d + 1);
vs.emplace_back(v, d);
}
};
dfs(dfs, root);
st.build(vs);
}
int lca(int u, int v) {
int l = id[u], r = id[v];
if (r < l) std::swap(l, r);
return st.fold(l, r + 1).first;
}
T distance(int u, int v) {
int w = lca(u, v);
return dist[u] + dist[v] - 2 * dist[w];
}
private:
int n;
std::vector<int> id;
std::vector<T> dist;
std::vector<std::pair<int, int>> vs;
sparse_table<std::pair<int, int>, internal_lca::op> st;
};
} // namespace ebi