This documentation is automatically generated by online-judge-tools/verification-helper
#define PROBLEM "https://judge.yosupo.jp/problem/tree_path_composite_sum"
#include "../../modint/modint.hpp"
#include "../../template/template.hpp"
#include "../../tree/rerooting.hpp"
namespace ebi {
using mint = modint998244353;
void main_() {
int n;
std::cin >> n;
Graph<int> g(n);
std::vector<std::pair<mint, mint>> edges;
std::vector<mint> a(n);
std::cin >> a;
rep(i, 0, n - 1) {
int u, v;
mint b, c;
std::cin >> u >> v >> b >> c;
g.add_undirected_edge(u, v, 1);
edges.emplace_back(b, c);
}
g.build();
using V = std::pair<mint, mint>;
auto merge = [&](V x, V y) -> V {
return {x.first + y.first, x.second + y.second};
};
auto put_edge = [&](Graph<int>::edge_type e, V x) -> V {
auto [b, c] = edges[e.id];
return {b * x.first + c * x.second, x.second};
};
auto put_root = [&](int v, V x) -> V {
return {x.first + a[v], x.second + 1};
};
rerooting_dp dp(g, V{0, 0}, merge, put_edge, put_root);
rep(i, 0, n) {
std::cout << dp.get(i).first << " \n"[i == n - 1];
}
}
} // namespace ebi
int main() {
ebi::fast_io();
int t = 1;
// std::cin >> t;
while (t--) {
ebi::main_();
}
return 0;
}
#line 1 "test/tree/Tree_Path_Composite_Sum.test.cpp"
#define PROBLEM "https://judge.yosupo.jp/problem/tree_path_composite_sum"
#line 2 "modint/modint.hpp"
#include <cassert>
#include <iostream>
#line 2 "modint/base.hpp"
#include <concepts>
#line 5 "modint/base.hpp"
#include <utility>
namespace ebi {
template <class T>
concept Modint = requires(T a, T b) {
a + b;
a - b;
a * b;
a / b;
a.inv();
a.val();
a.pow(std::declval<long long>());
T::mod();
};
template <Modint mint> std::istream &operator>>(std::istream &os, mint &a) {
long long x;
os >> x;
a = x;
return os;
}
template <Modint mint>
std::ostream &operator<<(std::ostream &os, const mint &a) {
return os << a.val();
}
} // namespace ebi
#line 7 "modint/modint.hpp"
namespace ebi {
template <int m> struct static_modint {
private:
using modint = static_modint;
public:
static constexpr int mod() {
return m;
}
static constexpr modint raw(int v) {
modint x;
x._v = v;
return x;
}
constexpr static_modint() : _v(0) {}
template <std::signed_integral T> constexpr static_modint(T v) {
long long x = (long long)(v % (long long)(umod()));
if (x < 0) x += umod();
_v = (unsigned int)(x);
}
template <std::unsigned_integral T> constexpr static_modint(T v) {
_v = (unsigned int)(v % umod());
}
constexpr unsigned int val() const {
return _v;
}
constexpr unsigned int value() const {
return val();
}
constexpr modint &operator++() {
_v++;
if (_v == umod()) _v = 0;
return *this;
}
constexpr modint &operator--() {
if (_v == 0) _v = umod();
_v--;
return *this;
}
constexpr modint operator++(int) {
modint res = *this;
++*this;
return res;
}
constexpr modint operator--(int) {
modint res = *this;
--*this;
return res;
}
constexpr modint &operator+=(const modint &rhs) {
_v += rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
constexpr modint &operator-=(const modint &rhs) {
_v -= rhs._v;
if (_v >= umod()) _v += umod();
return *this;
}
constexpr modint &operator*=(const modint &rhs) {
unsigned long long x = _v;
x *= rhs._v;
_v = (unsigned int)(x % (unsigned long long)umod());
return *this;
}
constexpr modint &operator/=(const modint &rhs) {
return *this = *this * rhs.inv();
}
constexpr modint operator+() const {
return *this;
}
constexpr modint operator-() const {
return modint() - *this;
}
constexpr modint pow(long long n) const {
assert(0 <= n);
modint x = *this, res = 1;
while (n) {
if (n & 1) res *= x;
x *= x;
n >>= 1;
}
return res;
}
constexpr modint inv() const {
assert(_v);
return pow(umod() - 2);
}
friend modint operator+(const modint &lhs, const modint &rhs) {
return modint(lhs) += rhs;
}
friend modint operator-(const modint &lhs, const modint &rhs) {
return modint(lhs) -= rhs;
}
friend modint operator*(const modint &lhs, const modint &rhs) {
return modint(lhs) *= rhs;
}
friend modint operator/(const modint &lhs, const modint &rhs) {
return modint(lhs) /= rhs;
}
friend bool operator==(const modint &lhs, const modint &rhs) {
return lhs.val() == rhs.val();
}
friend bool operator!=(const modint &lhs, const modint &rhs) {
return !(lhs == rhs);
}
private:
unsigned int _v = 0;
static constexpr unsigned int umod() {
return m;
}
};
using modint998244353 = static_modint<998244353>;
using modint1000000007 = static_modint<1000000007>;
} // namespace ebi
#line 1 "template/template.hpp"
#include <bits/stdc++.h>
#define rep(i, a, n) for (int i = (int)(a); i < (int)(n); i++)
#define rrep(i, a, n) for (int i = ((int)(n)-1); i >= (int)(a); i--)
#define Rep(i, a, n) for (i64 i = (i64)(a); i < (i64)(n); i++)
#define RRep(i, a, n) for (i64 i = ((i64)(n)-i64(1)); i >= (i64)(a); i--)
#define all(v) (v).begin(), (v).end()
#define rall(v) (v).rbegin(), (v).rend()
#line 2 "template/int_alias.hpp"
#line 4 "template/int_alias.hpp"
namespace ebi {
using ld = long double;
using std::size_t;
using i8 = std::int8_t;
using u8 = std::uint8_t;
using i16 = std::int16_t;
using u16 = std::uint16_t;
using i32 = std::int32_t;
using u32 = std::uint32_t;
using i64 = std::int64_t;
using u64 = std::uint64_t;
using i128 = __int128_t;
using u128 = __uint128_t;
} // namespace ebi
#line 2 "template/io.hpp"
#line 5 "template/io.hpp"
#include <optional>
#line 7 "template/io.hpp"
#line 9 "template/io.hpp"
namespace ebi {
template <typename T1, typename T2>
std::ostream &operator<<(std::ostream &os, const std::pair<T1, T2> &pa) {
return os << pa.first << " " << pa.second;
}
template <typename T1, typename T2>
std::istream &operator>>(std::istream &os, std::pair<T1, T2> &pa) {
return os >> pa.first >> pa.second;
}
template <typename T>
std::ostream &operator<<(std::ostream &os, const std::vector<T> &vec) {
for (std::size_t i = 0; i < vec.size(); i++)
os << vec[i] << (i + 1 == vec.size() ? "" : " ");
return os;
}
template <typename T>
std::istream &operator>>(std::istream &os, std::vector<T> &vec) {
for (T &e : vec) std::cin >> e;
return os;
}
template <typename T>
std::ostream &operator<<(std::ostream &os, const std::optional<T> &opt) {
if (opt) {
os << opt.value();
} else {
os << "invalid value";
}
return os;
}
void fast_io() {
std::cout << std::fixed << std::setprecision(15);
std::cin.tie(nullptr);
std::ios::sync_with_stdio(false);
}
} // namespace ebi
#line 2 "template/utility.hpp"
#line 5 "template/utility.hpp"
#line 2 "graph/base.hpp"
#line 5 "graph/base.hpp"
#include <ranges>
#line 7 "graph/base.hpp"
#line 2 "data_structure/simple_csr.hpp"
#line 6 "data_structure/simple_csr.hpp"
namespace ebi {
template <class E> struct simple_csr {
simple_csr() = default;
simple_csr(int n, const std::vector<std::pair<int, E>>& elements)
: start(n + 1, 0), elist(elements.size()) {
for (auto e : elements) {
start[e.first + 1]++;
}
for (auto i : std::views::iota(0, n)) {
start[i + 1] += start[i];
}
auto counter = start;
for (auto [i, e] : elements) {
elist[counter[i]++] = e;
}
}
simple_csr(const std::vector<std::vector<E>>& es)
: start(es.size() + 1, 0) {
int n = es.size();
for (auto i : std::views::iota(0, n)) {
start[i + 1] = (int)es[i].size() + start[i];
}
elist.resize(start.back());
for (auto i : std::views::iota(0, n)) {
std::copy(es[i].begin(), es[i].end(), elist.begin() + start[i]);
}
}
int size() const {
return (int)start.size() - 1;
}
const auto operator[](int i) const {
return std::ranges::subrange(elist.begin() + start[i],
elist.begin() + start[i + 1]);
}
auto operator[](int i) {
return std::ranges::subrange(elist.begin() + start[i],
elist.begin() + start[i + 1]);
}
const auto operator()(int i, int l, int r) const {
return std::ranges::subrange(elist.begin() + start[i] + l,
elist.begin() + start[i + 1] + r);
}
auto operator()(int i, int l, int r) {
return std::ranges::subrange(elist.begin() + start[i] + l,
elist.begin() + start[i + 1] + r);
}
private:
std::vector<int> start;
std::vector<E> elist;
};
} // namespace ebi
#line 9 "graph/base.hpp"
namespace ebi {
template <class T> struct Edge {
int from, to;
T cost;
int id;
};
template <class E> struct Graph {
using cost_type = E;
using edge_type = Edge<cost_type>;
Graph(int n_) : n(n_) {}
Graph() = default;
void add_edge(int u, int v, cost_type c) {
assert(!prepared && u < n && v < n);
buff.emplace_back(u, edge_type{u, v, c, m});
edges.emplace_back(edge_type{u, v, c, m++});
}
void add_undirected_edge(int u, int v, cost_type c) {
assert(!prepared && u < n && v < n);
buff.emplace_back(u, edge_type{u, v, c, m});
buff.emplace_back(v, edge_type{v, u, c, m});
edges.emplace_back(edge_type{u, v, c, m});
m++;
}
void read_tree(int offset = 1, bool is_weighted = false) {
read_graph(n - 1, offset, false, is_weighted);
}
void read_parents(int offset = 1) {
for (auto i : std::views::iota(1, n)) {
int p;
std::cin >> p;
p -= offset;
add_undirected_edge(p, i, 1);
}
build();
}
void read_graph(int e, int offset = 1, bool is_directed = false,
bool is_weighted = false) {
for (int i = 0; i < e; i++) {
int u, v;
std::cin >> u >> v;
u -= offset;
v -= offset;
if (is_weighted) {
cost_type c;
std::cin >> c;
if (is_directed) {
add_edge(u, v, c);
} else {
add_undirected_edge(u, v, c);
}
} else {
if (is_directed) {
add_edge(u, v, 1);
} else {
add_undirected_edge(u, v, 1);
}
}
}
build();
}
void build() {
assert(!prepared);
csr = simple_csr<edge_type>(n, buff);
buff.clear();
prepared = true;
}
int size() const {
return n;
}
int node_number() const {
return n;
}
int edge_number() const {
return m;
}
edge_type get_edge(int i) const {
assert(prepared);
return edges[i];
}
std::vector<edge_type> get_edges() const {
assert(prepared);
return edges;
}
const auto operator[](int i) const {
assert(prepared);
return csr[i];
}
auto operator[](int i) {
assert(prepared);
return csr[i];
}
private:
int n, m = 0;
std::vector<std::pair<int, edge_type>> buff;
std::vector<edge_type> edges;
simple_csr<edge_type> csr;
bool prepared = false;
};
} // namespace ebi
#line 8 "template/utility.hpp"
namespace ebi {
template <class T> inline bool chmin(T &a, T b) {
if (a > b) {
a = b;
return true;
}
return false;
}
template <class T> inline bool chmax(T &a, T b) {
if (a < b) {
a = b;
return true;
}
return false;
}
template <class T> T safe_ceil(T a, T b) {
if (a % b == 0)
return a / b;
else if (a >= 0)
return (a / b) + 1;
else
return -((-a) / b);
}
template <class T> T safe_floor(T a, T b) {
if (a % b == 0)
return a / b;
else if (a >= 0)
return a / b;
else
return -((-a) / b) - 1;
}
constexpr i64 LNF = std::numeric_limits<i64>::max() / 4;
constexpr int INF = std::numeric_limits<int>::max() / 2;
const std::vector<int> dy = {1, 0, -1, 0, 1, 1, -1, -1};
const std::vector<int> dx = {0, 1, 0, -1, 1, -1, 1, -1};
} // namespace ebi
#line 2 "template/debug_template.hpp"
#line 4 "template/debug_template.hpp"
namespace ebi {
#ifdef LOCAL
#define debug(...) \
std::cerr << "LINE: " << __LINE__ << " [" << #__VA_ARGS__ << "]:", \
debug_out(__VA_ARGS__)
#else
#define debug(...)
#endif
void debug_out() {
std::cerr << std::endl;
}
template <typename Head, typename... Tail> void debug_out(Head h, Tail... t) {
std::cerr << " " << h;
if (sizeof...(t) > 0) std::cerr << " :";
debug_out(t...);
}
} // namespace ebi
#line 2 "tree/rerooting.hpp"
#line 6 "tree/rerooting.hpp"
#line 2 "tree/heavy_light_decomposition.hpp"
#line 6 "tree/heavy_light_decomposition.hpp"
#line 8 "tree/heavy_light_decomposition.hpp"
namespace ebi {
template <class T> struct heavy_light_decomposition {
private:
void dfs_sz(int v) {
for (auto &e : g[v]) {
if (e.to == par[v]) continue;
par[e.to] = v;
depth_[e.to] = depth_[v] + 1;
dist[e.to] = dist[v] + e.cost;
dfs_sz(e.to);
sz[v] += sz[e.to];
if (sz[e.to] > sz[g[v][0].to] || g[v][0].to == par[v])
std::swap(e, g[v][0]);
}
}
void dfs_hld(int v) {
in[v] = num++;
rev[in[v]] = v;
for (auto e : g[v]) {
if (e.to == par[v]) continue;
nxt[e.to] = (e.to == g[v][0].to ? nxt[v] : e.to);
dfs_hld(e.to);
}
out[v] = num;
}
// [u, v) パスの取得 (v は u の祖先)
std::vector<std::pair<int, int>> ascend(int u, int v) const {
std::vector<std::pair<int, int>> res;
while (nxt[u] != nxt[v]) {
res.emplace_back(in[u], in[nxt[u]]);
u = par[nxt[u]];
}
if (u != v) res.emplace_back(in[u], in[v] + 1);
return res;
}
// (u, v] パスの取得 (u は v の祖先)
std::vector<std::pair<int, int>> descend(int u, int v) const {
if (u == v) return {};
if (nxt[u] == nxt[v]) return {{in[u] + 1, in[v]}};
auto res = descend(u, par[nxt[v]]);
res.emplace_back(in[nxt[v]], in[v]);
return res;
}
public:
heavy_light_decomposition(const Graph<T> &gh, int root_ = 0)
: n(gh.size()),
root(root_),
g(gh),
sz(n, 1),
in(n),
out(n),
nxt(n),
par(n, -1),
depth_(n, 0),
rev(n),
dist(n, 0) {
nxt[root] = root;
dfs_sz(root);
dfs_hld(root);
}
int idx(int u) const {
return in[u];
}
int rev_idx(int i) const {
return rev[i];
}
int la(int v, int k) const {
while (1) {
int u = nxt[v];
if (in[u] <= in[v] - k) return rev[in[v] - k];
k -= in[v] - in[u] + 1;
v = par[u];
}
}
int lca(int u, int v) const {
while (nxt[u] != nxt[v]) {
if (in[u] < in[v]) std::swap(u, v);
u = par[nxt[u]];
}
return depth_[u] < depth_[v] ? u : v;
}
int jump(int s, int t, int i) const {
if (i == 0) return s;
int l = lca(s, t);
int d = depth_[s] + depth_[t] - depth_[l] * 2;
if (d < i) return -1;
if (depth_[s] - depth_[l] >= i) return la(s, i);
i = d - i;
return la(t, i);
}
std::vector<int> path(int s, int t) const {
int l = lca(s, t);
std::vector<int> a, b;
for (; s != l; s = par[s]) a.emplace_back(s);
for (; t != l; t = par[t]) b.emplace_back(t);
a.emplace_back(l);
std::reverse(b.begin(), b.end());
a.insert(a.end(), b.begin(), b.end());
return a;
}
int root_of_heavy_path(int u) const {
return nxt[u];
}
int parent(int u) const {
return par[u];
}
T distance(int u, int v) const {
return dist[u] + dist[v] - 2 * dist[lca(u, v)];
}
T distance_from_root(int v) const {
return dist[v];
}
T depth(int v) const {
return depth_[v];
}
bool at_path(int u, int v, int s) const {
return distance(u, v) == distance(u, s) + distance(s, v);
}
std::pair<int, int> subtree_section(int v) const {
return {in[v], out[v]};
}
bool is_subtree(int u, int v) const {
return in[u] <= in[v] && in[v] < out[u];
}
template <class F>
void path_noncommutative_query(int u, int v, bool vertex,
const F &f) const {
int l = lca(u, v);
for (auto [a, b] : ascend(u, l)) f(a + 1, b);
if (vertex) f(in[l], in[l] + 1);
for (auto [a, b] : descend(l, v)) f(a, b + 1);
}
std::vector<std::pair<int, int>> path_sections(int u, int v,
bool vertex) const {
int l = lca(u, v);
std::vector<std::pair<int, int>> sections;
for (auto [a, b] : ascend(u, l)) sections.emplace_back(a + 1, b);
if (vertex) sections.emplace_back(in[l], in[l] + 1);
for (auto [a, b] : descend(l, v)) sections.emplace_back(a, b + 1);
return sections;
}
template <class F>
int max_path(int u, int v, bool vertex, F binary_search) const {
int prev = -1;
int l = lca(u, v);
for (auto [a, b] : ascend(u, l)) {
a++;
int m = binary_search(a, b);
if (m == b) {
prev = rev[b];
} else {
return (m == a ? prev : rev[m]);
}
}
if (vertex) {
int m = binary_search(in[l], in[l] + 1);
if (m == in[l]) {
return prev;
} else {
prev = l;
}
}
for (auto [a, b] : descend(l, v)) {
b++;
int m = binary_search(a, b);
if (m == b) {
prev = rev[b - 1];
} else {
return m == a ? prev : rev[m - 1];
}
}
return v;
}
template <class F> void subtree_query(int u, bool vertex, const F &f) {
f(in[u] + int(!vertex), out[u]);
}
const std::vector<int> &dfs_order() const {
return rev;
}
template <class ADD, class QUERY, class CLEAR, class RESET>
void dsu_on_tree(const ADD &add, const QUERY &query, const CLEAR &clear,
const RESET &reset) const;
std::vector<std::pair<int, int>> lca_based_auxiliary_tree_dfs_order(
std::vector<int> vs) const;
std::pair<std::vector<int>, Graph<T>> lca_based_auxiliary_tree(
std::vector<int> vs) const;
private:
int n, root;
Graph<T> g;
std::vector<int> sz, in, out, nxt, par, depth_, rev;
std::vector<T> dist;
int num = 0;
};
} // namespace ebi
#line 9 "tree/rerooting.hpp"
namespace ebi {
template <class T, class V> struct rerooting_dp {
template <class MERGE, class PUT_EDGE, class PUT_ROOT>
rerooting_dp(const Graph<T> &tree, const V e, const MERGE &merge,
const PUT_EDGE &put_edge, const PUT_ROOT &put_root)
: n(tree.node_number()),
hld(tree),
full_tree_dp(n, e),
child_dp(n, e),
parent_dp(n, e) {
auto dfs_sub = [&](auto &&self, int v, int par = -1) -> void {
for (const auto &edge : tree[v]) {
if (edge.to == par) continue;
self(self, edge.to, v);
child_dp[v] =
merge(child_dp[v], put_edge(edge, child_dp[edge.to]));
}
child_dp[v] = put_root(v, child_dp[v]);
};
dfs_sub(dfs_sub, 0);
auto dfs_all = [&](auto &&self, int v, int par = -1) -> void {
std::vector<int> ch;
std::vector<V> dp;
V ret = e;
for (const auto &edge : tree[v]) {
if (edge.to == par) {
ret = put_edge(edge, parent_dp[v]);
} else {
ch.emplace_back(edge.to);
dp.emplace_back(put_edge(edge, child_dp[edge.to]));
}
}
int sz = (int)ch.size();
if (ch.empty()) {
full_tree_dp[v] = put_root(v, ret);
return;
}
std::vector<V> lcum(sz, ret);
for (int i = 0; i < sz - 1; i++) {
lcum[i + 1] = merge(lcum[i], dp[i]);
}
V rcum = e;
for (int i = sz - 1; i >= 0; i--) {
parent_dp[ch[i]] = put_root(v, merge(lcum[i], rcum));
rcum = merge(rcum, dp[i]);
}
for (int i = 0; i < sz; i++) {
self(self, ch[i], v);
}
full_tree_dp[v] = put_root(v, merge(rcum, ret));
};
dfs_all(dfs_all, 0);
}
V get(int v) const {
return get(v, v);
}
V get(int v, int root) const {
if (root == v) return full_tree_dp[v];
if (!hld.is_subtree(v, root)) {
return child_dp[v];
}
return parent_dp[hld.jump(v, root, 1)];
}
std::vector<V> get_full_dp() const {
return full_tree_dp;
}
private:
int n;
heavy_light_decomposition<T> hld;
std::vector<V> full_tree_dp;
std::vector<V> child_dp;
std::vector<V> parent_dp;
};
} // namespace ebi
#line 6 "test/tree/Tree_Path_Composite_Sum.test.cpp"
namespace ebi {
using mint = modint998244353;
void main_() {
int n;
std::cin >> n;
Graph<int> g(n);
std::vector<std::pair<mint, mint>> edges;
std::vector<mint> a(n);
std::cin >> a;
rep(i, 0, n - 1) {
int u, v;
mint b, c;
std::cin >> u >> v >> b >> c;
g.add_undirected_edge(u, v, 1);
edges.emplace_back(b, c);
}
g.build();
using V = std::pair<mint, mint>;
auto merge = [&](V x, V y) -> V {
return {x.first + y.first, x.second + y.second};
};
auto put_edge = [&](Graph<int>::edge_type e, V x) -> V {
auto [b, c] = edges[e.id];
return {b * x.first + c * x.second, x.second};
};
auto put_root = [&](int v, V x) -> V {
return {x.first + a[v], x.second + 1};
};
rerooting_dp dp(g, V{0, 0}, merge, put_edge, put_root);
rep(i, 0, n) {
std::cout << dp.get(i).first << " \n"[i == n - 1];
}
}
} // namespace ebi
int main() {
ebi::fast_io();
int t = 1;
// std::cin >> t;
while (t--) {
ebi::main_();
}
return 0;
}