This documentation is automatically generated by online-judge-tools/verification-helper
#define PROBLEM "https://judge.yosupo.jp/problem/stern_brocot_tree"
#include "../../math/stern_brocot_tree.hpp"
#include "../../template/template.hpp"
namespace ebi {
void main_() {
std::string type;
std::cin >> type;
if (type == "ENCODE_PATH") {
i64 a, b;
std::cin >> a >> b;
auto path = stern_brocot_tree::encode_path({a, b});
stern_brocot_tree::print_path(path);
} else if (type == "DECODE_PATH") {
int k;
std::cin >> k;
std::vector<std::pair<char, i64>> path(k);
for (auto &[c, n] : path) {
std::cin >> c >> n;
}
auto lr = stern_brocot_tree::decode_path(path);
auto f = stern_brocot_tree::val(lr);
std::cout << f << '\n';
} else if (type == "LCA") {
i64 a, b, c, d;
std::cin >> a >> b >> c >> d;
std::cout << stern_brocot_tree::lca({a, b}, {c, d}) << '\n';
} else if (type == "ANCESTOR") {
i64 k, a, b;
std::cin >> k >> a >> b;
auto f = stern_brocot_tree::ancestor(k, {a, b});
if (f) {
std::cout << f.value() << '\n';
} else {
std::cout << "-1\n";
}
} else if (type == "RANGE") {
i64 a, b;
std::cin >> a >> b;
std::cout << stern_brocot_tree::range({a, b}) << '\n';
}
}
} // namespace ebi
int main() {
ebi::fast_io();
int t = 1;
std::cin >> t;
while (t--) {
ebi::main_();
}
return 0;
}
#line 1 "test/math/Stern-Brocot_Tree.test.cpp"
#define PROBLEM "https://judge.yosupo.jp/problem/stern_brocot_tree"
#line 2 "math/stern_brocot_tree.hpp"
#include <algorithm>
#include <cassert>
#include <concepts>
#include <cstdint>
#include <iostream>
#include <optional>
#include <vector>
/*
reference: https://miscalc.hatenablog.com/entry/2023/12/22/213007
https://rsk0315.hatenablog.com/entry/2023/04/17/022705
https://atcoder.jp/contests/abc294/editorial/6017
*/
namespace ebi {
struct stern_brocot_tree {
private:
using value_type = std::int64_t;
using T = value_type;
using Fraction = std::pair<T, T>;
static Fraction add(const Fraction &lhs, const Fraction &rhs) {
return {lhs.first + rhs.first, lhs.second + rhs.second};
}
static Fraction mul(const T k, const Fraction &a) {
return {k * a.first, k * a.second};
}
static bool compare(Fraction a, Fraction b) {
return __int128_t(a.first) * b.second < __int128_t(a.second) * b.first;
}
static void euler_tour_order(std::vector<Fraction> &fs) {
std::sort(fs.begin(), fs.end(), [&](Fraction a, Fraction b) -> bool {
if (a == b) return false;
if (in_subtree(a, b)) return false;
if (in_subtree(b, a)) return true;
return compare(a, b);
});
}
public:
stern_brocot_tree() = default;
static std::vector<T> encode_path(const Fraction &f) {
auto [x, y] = f;
std::vector<T> path;
while (x != y) {
T m = (x - 1) / y;
path.emplace_back(m);
x -= m * y;
std::swap(x, y);
}
return path;
}
static std::pair<Fraction, Fraction> decode_path(
const std::vector<T> &path) {
T lx = 0, ly = 1, rx = 1, ry = 0;
for (bool is_right = true; auto n : path) {
if (is_right) {
lx += rx * n;
ly += ry * n;
} else {
rx += lx * n;
ry += ly * n;
}
is_right = !is_right;
}
return {{lx, ly}, {rx, ry}};
}
static std::pair<Fraction, Fraction> decode_path(
const std::vector<std::pair<char, T>> &path) {
if (path.empty()) {
return {{0, 1}, {1, 0}};
}
std::vector<T> p;
bool is_right = true;
if (path[0].first == 'L') {
p.emplace_back(0);
is_right = !is_right;
}
for (auto [c, n] : path) {
assert(c == (is_right ? 'R' : 'L'));
p.emplace_back(n);
is_right = !is_right;
}
return decode_path(p);
}
static Fraction lca(Fraction f, Fraction g) {
auto path_f = encode_path(f);
auto path_g = encode_path(g);
std::vector<T> path_h;
for (int i = 0; i < (int)std::min(path_f.size(), path_g.size()); i++) {
T k = std::min(path_f[i], path_g[i]);
path_h.emplace_back(k);
if (path_f[i] != path_g[i]) {
break;
}
}
return val(decode_path(path_h));
}
static std::optional<Fraction> ancestor(T k, Fraction f) {
std::vector<T> path;
for (auto n : encode_path(f)) {
T m = std::min(k, n);
path.emplace_back(m);
k -= m;
if (k == 0) break;
}
if (k > 0) return std::nullopt;
return val(decode_path(path));
}
static std::pair<Fraction, Fraction> range(Fraction f) {
return decode_path(encode_path(f));
}
template <class F> static Fraction binary_search(const T max_value, F f) {
Fraction l = {0, 1}, r = {1, 0};
while (true) {
Fraction now = val({l, r});
bool flag = f(now);
Fraction from = flag ? l : r;
Fraction to = flag ? r : l;
T ok = 1, ng = 2;
while (f(add(from, mul(ng, to))) == flag) {
ok <<= 1;
ng <<= 1;
auto nxt = add(from, mul(ok, to));
if (nxt.first > max_value || nxt.second > max_value) return to;
}
while (ng - ok > 1) {
T mid = (ok + ng) >> 1;
if (f(add(from, mul(mid, to))) == flag) {
ok = mid;
} else {
ng = mid;
}
}
(flag ? l : r) = add(from, mul(ok, to));
}
assert(0);
return l;
}
static std::pair<Fraction, Fraction> nearest_fraction(T max, Fraction f) {
Fraction l = {0, 1}, r = {1, 0};
for (bool is_right = true; auto n : encode_path(f)) {
Fraction nl = l, nr = r;
if (is_right) {
nl = add(l, mul(n, r));
} else {
nr = add(r, mul(n, l));
}
if (std::max(nl.second, nr.second) > max) {
nl = l, nr = r;
if (is_right) {
T x = (max - l.second) / r.second;
nl.first += r.first * x;
nl.second += r.second * x;
} else {
T x = (max - r.second) / l.second;
nr.first += l.first * x;
nr.second += l.second * x;
}
std::swap(l, nl);
std::swap(r, nr);
break;
}
std::swap(l, nl);
std::swap(r, nr);
is_right = !is_right;
}
return {l, r};
}
static Fraction best_rational_within_an_interval(Fraction l, Fraction r) {
Fraction m = lca(l, r);
if (l == m) {
Fraction rch = childs(l).second;
if (rch == r) {
return childs(r).first;
} else {
return rch;
}
} else if (r == m) {
Fraction lch = childs(r).first;
if (lch == l) {
return childs(l).second;
} else {
return lch;
}
} else {
return m;
}
}
static std::vector<std::pair<Fraction, int>>
lca_based_auxiliary_tree_euler_tour_order(std::vector<Fraction> fs) {
if (fs.empty()) return {};
euler_tour_order(fs);
fs.erase(std::unique(fs.begin(), fs.end()), fs.end());
int n = (int)fs.size();
for (int i = 0; i < n - 1; i++) {
fs.emplace_back(lca(fs[i], fs[i + 1]));
}
euler_tour_order(fs);
fs.erase(std::unique(fs.begin(), fs.end()), fs.end());
n = (int)fs.size();
std::vector<std::pair<Fraction, int>> tree(n);
std::vector<int> stack = {0};
tree[0] = {fs[0], -1};
for (int i = 1; i < n; i++) {
while (!in_subtree(fs[i], fs[stack.back()])) {
stack.pop_back();
}
tree[i] = {fs[i], stack.back()};
stack.emplace_back(i);
}
return tree;
}
static std::pair<Fraction, Fraction> childs(Fraction f) {
auto [l, r] = range(f);
return {add(l, f), add(f, r)};
}
static bool in_subtree(Fraction f, Fraction g) {
auto [l, r] = range(g);
return compare(l, f) && compare(f, r);
}
static T depth(Fraction f) {
T d = 0;
for (auto n : encode_path(f)) d += n;
return d;
}
static Fraction val(const std::pair<Fraction, Fraction> &f) {
return add(f.first, f.second);
}
static void print_path(const std::vector<T> &path) {
if (path.empty()) {
std::cout << "0\n";
return;
}
int k = (int)path.size() - int(path[0] == 0);
std::cout << k;
for (bool is_right = true; auto c : path) {
if (c > 0) {
std::cout << " " << (is_right ? 'R' : 'L') << " " << c;
}
is_right = !is_right;
}
std::cout << '\n';
return;
}
};
} // namespace ebi
#line 1 "template/template.hpp"
#include <bits/stdc++.h>
#define rep(i, a, n) for (int i = (int)(a); i < (int)(n); i++)
#define rrep(i, a, n) for (int i = ((int)(n)-1); i >= (int)(a); i--)
#define Rep(i, a, n) for (i64 i = (i64)(a); i < (i64)(n); i++)
#define RRep(i, a, n) for (i64 i = ((i64)(n)-i64(1)); i >= (i64)(a); i--)
#define all(v) (v).begin(), (v).end()
#define rall(v) (v).rbegin(), (v).rend()
#line 2 "template/int_alias.hpp"
#line 4 "template/int_alias.hpp"
namespace ebi {
using ld = long double;
using std::size_t;
using i8 = std::int8_t;
using u8 = std::uint8_t;
using i16 = std::int16_t;
using u16 = std::uint16_t;
using i32 = std::int32_t;
using u32 = std::uint32_t;
using i64 = std::int64_t;
using u64 = std::uint64_t;
using i128 = __int128_t;
using u128 = __uint128_t;
} // namespace ebi
#line 2 "template/io.hpp"
#line 7 "template/io.hpp"
#line 2 "modint/base.hpp"
#line 6 "modint/base.hpp"
namespace ebi {
template <class T>
concept Modint = requires(T a, T b) {
a + b;
a - b;
a * b;
a / b;
a.inv();
a.val();
a.pow(std::declval<long long>());
T::mod();
};
template <Modint mint> std::istream &operator>>(std::istream &os, mint &a) {
long long x;
os >> x;
a = x;
return os;
}
template <Modint mint>
std::ostream &operator<<(std::ostream &os, const mint &a) {
return os << a.val();
}
} // namespace ebi
#line 9 "template/io.hpp"
namespace ebi {
template <typename T1, typename T2>
std::ostream &operator<<(std::ostream &os, const std::pair<T1, T2> &pa) {
return os << pa.first << " " << pa.second;
}
template <typename T1, typename T2>
std::istream &operator>>(std::istream &os, std::pair<T1, T2> &pa) {
return os >> pa.first >> pa.second;
}
template <typename T>
std::ostream &operator<<(std::ostream &os, const std::vector<T> &vec) {
for (std::size_t i = 0; i < vec.size(); i++)
os << vec[i] << (i + 1 == vec.size() ? "" : " ");
return os;
}
template <typename T>
std::istream &operator>>(std::istream &os, std::vector<T> &vec) {
for (T &e : vec) std::cin >> e;
return os;
}
template <typename T>
std::ostream &operator<<(std::ostream &os, const std::optional<T> &opt) {
if (opt) {
os << opt.value();
} else {
os << "invalid value";
}
return os;
}
void fast_io() {
std::cout << std::fixed << std::setprecision(15);
std::cin.tie(nullptr);
std::ios::sync_with_stdio(false);
}
} // namespace ebi
#line 2 "template/utility.hpp"
#line 5 "template/utility.hpp"
#line 2 "graph/base.hpp"
#line 5 "graph/base.hpp"
#include <ranges>
#line 7 "graph/base.hpp"
#line 2 "data_structure/simple_csr.hpp"
#line 6 "data_structure/simple_csr.hpp"
namespace ebi {
template <class E> struct simple_csr {
simple_csr() = default;
simple_csr(int n, const std::vector<std::pair<int, E>>& elements)
: start(n + 1, 0), elist(elements.size()) {
for (auto e : elements) {
start[e.first + 1]++;
}
for (auto i : std::views::iota(0, n)) {
start[i + 1] += start[i];
}
auto counter = start;
for (auto [i, e] : elements) {
elist[counter[i]++] = e;
}
}
simple_csr(const std::vector<std::vector<E>>& es)
: start(es.size() + 1, 0) {
int n = es.size();
for (auto i : std::views::iota(0, n)) {
start[i + 1] = (int)es[i].size() + start[i];
}
elist.resize(start.back());
for (auto i : std::views::iota(0, n)) {
std::copy(es[i].begin(), es[i].end(), elist.begin() + start[i]);
}
}
int size() const {
return (int)start.size() - 1;
}
const auto operator[](int i) const {
return std::ranges::subrange(elist.begin() + start[i],
elist.begin() + start[i + 1]);
}
auto operator[](int i) {
return std::ranges::subrange(elist.begin() + start[i],
elist.begin() + start[i + 1]);
}
const auto operator()(int i, int l, int r) const {
return std::ranges::subrange(elist.begin() + start[i] + l,
elist.begin() + start[i + 1] + r);
}
auto operator()(int i, int l, int r) {
return std::ranges::subrange(elist.begin() + start[i] + l,
elist.begin() + start[i + 1] + r);
}
private:
std::vector<int> start;
std::vector<E> elist;
};
} // namespace ebi
#line 9 "graph/base.hpp"
namespace ebi {
template <class T> struct Edge {
int from, to;
T cost;
int id;
};
template <class E> struct Graph {
using cost_type = E;
using edge_type = Edge<cost_type>;
Graph(int n_) : n(n_) {}
Graph() = default;
void add_edge(int u, int v, cost_type c) {
assert(!prepared && u < n && v < n);
buff.emplace_back(u, edge_type{u, v, c, m});
edges.emplace_back(edge_type{u, v, c, m++});
}
void add_undirected_edge(int u, int v, cost_type c) {
assert(!prepared && u < n && v < n);
buff.emplace_back(u, edge_type{u, v, c, m});
buff.emplace_back(v, edge_type{v, u, c, m});
edges.emplace_back(edge_type{u, v, c, m});
m++;
}
void read_tree(int offset = 1, bool is_weighted = false) {
read_graph(n - 1, offset, false, is_weighted);
}
void read_parents(int offset = 1) {
for (auto i : std::views::iota(1, n)) {
int p;
std::cin >> p;
p -= offset;
add_undirected_edge(p, i, 1);
}
build();
}
void read_graph(int e, int offset = 1, bool is_directed = false,
bool is_weighted = false) {
for (int i = 0; i < e; i++) {
int u, v;
std::cin >> u >> v;
u -= offset;
v -= offset;
if (is_weighted) {
cost_type c;
std::cin >> c;
if (is_directed) {
add_edge(u, v, c);
} else {
add_undirected_edge(u, v, c);
}
} else {
if (is_directed) {
add_edge(u, v, 1);
} else {
add_undirected_edge(u, v, 1);
}
}
}
build();
}
void build() {
assert(!prepared);
csr = simple_csr<edge_type>(n, buff);
buff.clear();
prepared = true;
}
int size() const {
return n;
}
int node_number() const {
return n;
}
int edge_number() const {
return m;
}
edge_type get_edge(int i) const {
assert(prepared);
return edges[i];
}
std::vector<edge_type> get_edges() const {
assert(prepared);
return edges;
}
const auto operator[](int i) const {
assert(prepared);
return csr[i];
}
auto operator[](int i) {
assert(prepared);
return csr[i];
}
private:
int n, m = 0;
std::vector<std::pair<int, edge_type>> buff;
std::vector<edge_type> edges;
simple_csr<edge_type> csr;
bool prepared = false;
};
} // namespace ebi
#line 8 "template/utility.hpp"
namespace ebi {
template <class T> inline bool chmin(T &a, T b) {
if (a > b) {
a = b;
return true;
}
return false;
}
template <class T> inline bool chmax(T &a, T b) {
if (a < b) {
a = b;
return true;
}
return false;
}
template <class T> T safe_ceil(T a, T b) {
if (a % b == 0)
return a / b;
else if (a >= 0)
return (a / b) + 1;
else
return -((-a) / b);
}
template <class T> T safe_floor(T a, T b) {
if (a % b == 0)
return a / b;
else if (a >= 0)
return a / b;
else
return -((-a) / b) - 1;
}
constexpr i64 LNF = std::numeric_limits<i64>::max() / 4;
constexpr int INF = std::numeric_limits<int>::max() / 2;
const std::vector<int> dy = {1, 0, -1, 0, 1, 1, -1, -1};
const std::vector<int> dx = {0, 1, 0, -1, 1, -1, 1, -1};
} // namespace ebi
#line 2 "template/debug_template.hpp"
#line 4 "template/debug_template.hpp"
namespace ebi {
#ifdef LOCAL
#define debug(...) \
std::cerr << "LINE: " << __LINE__ << " [" << #__VA_ARGS__ << "]:", \
debug_out(__VA_ARGS__)
#else
#define debug(...)
#endif
void debug_out() {
std::cerr << std::endl;
}
template <typename Head, typename... Tail> void debug_out(Head h, Tail... t) {
std::cerr << " " << h;
if (sizeof...(t) > 0) std::cerr << " :";
debug_out(t...);
}
} // namespace ebi
#line 5 "test/math/Stern-Brocot_Tree.test.cpp"
namespace ebi {
void main_() {
std::string type;
std::cin >> type;
if (type == "ENCODE_PATH") {
i64 a, b;
std::cin >> a >> b;
auto path = stern_brocot_tree::encode_path({a, b});
stern_brocot_tree::print_path(path);
} else if (type == "DECODE_PATH") {
int k;
std::cin >> k;
std::vector<std::pair<char, i64>> path(k);
for (auto &[c, n] : path) {
std::cin >> c >> n;
}
auto lr = stern_brocot_tree::decode_path(path);
auto f = stern_brocot_tree::val(lr);
std::cout << f << '\n';
} else if (type == "LCA") {
i64 a, b, c, d;
std::cin >> a >> b >> c >> d;
std::cout << stern_brocot_tree::lca({a, b}, {c, d}) << '\n';
} else if (type == "ANCESTOR") {
i64 k, a, b;
std::cin >> k >> a >> b;
auto f = stern_brocot_tree::ancestor(k, {a, b});
if (f) {
std::cout << f.value() << '\n';
} else {
std::cout << "-1\n";
}
} else if (type == "RANGE") {
i64 a, b;
std::cin >> a >> b;
std::cout << stern_brocot_tree::range({a, b}) << '\n';
}
}
} // namespace ebi
int main() {
ebi::fast_io();
int t = 1;
std::cin >> t;
while (t--) {
ebi::main_();
}
return 0;
}