This documentation is automatically generated by online-judge-tools/verification-helper
#define PROBLEM "https://judge.yosupo.jp/problem/enumerate_primes"
#include <iostream>
#include "../../math/eratosthenes_sieve.hpp"
int main() {
int n, a, b;
std::cin >> n >> a >> b;
ebi::eratosthenes_sieve sieve(n);
auto p = sieve.prime_table();
int sz = p.size();
int x = (sz - b + a - 1) / a;
std::cout << sz << " " << x << '\n';
for (int i = b; i < sz; i += a) {
std::cout << p[i] << " ";
}
std::cout << "\n";
}
#line 1 "test/math/Enumerate_Primes.test.cpp"
#define PROBLEM "https://judge.yosupo.jp/problem/enumerate_primes"
#include <iostream>
#line 2 "math/eratosthenes_sieve.hpp"
#include <cassert>
#include <cstdint>
#include <vector>
/*
reference: https://37zigen.com/sieve-eratosthenes/
*/
namespace ebi {
struct eratosthenes_sieve {
private:
using i64 = std::int_fast64_t;
int n;
std::vector<bool> table;
public:
eratosthenes_sieve(int _n) : n(_n), table(std::vector<bool>(n + 1, true)) {
table[1] = false;
for (i64 i = 2; i * i <= n; i++) {
if (!table[i]) continue;
for (i64 j = i; i * j <= n; j++) {
table[i * j] = false;
}
}
}
bool is_prime(int p) {
return table[p];
}
std::vector<int> prime_table(int m = -1) {
if (m < 0) m = n;
std::vector<int> prime;
for (int i = 2; i <= m; i++) {
if (table[i]) prime.emplace_back(i);
}
return prime;
}
};
} // namespace ebi
#line 6 "test/math/Enumerate_Primes.test.cpp"
int main() {
int n, a, b;
std::cin >> n >> a >> b;
ebi::eratosthenes_sieve sieve(n);
auto p = sieve.prime_table();
int sz = p.size();
int x = (sz - b + a - 1) / a;
std::cout << sz << " " << x << '\n';
for (int i = b; i < sz; i += a) {
std::cout << p[i] << " ";
}
std::cout << "\n";
}