This documentation is automatically generated by online-judge-tools/verification-helper
#define PROBLEM "https://judge.yosupo.jp/problem/scc"
#include "../../graph/scc_graph.hpp"
#include <iostream>
int main() {
int n, m;
std::cin >> n >> m;
ebi::scc_graph g(n);
for (int i = 0; i < m; ++i) {
int a, b;
std::cin >> a >> b;
g.add_edge(a, b);
}
auto scc = g.scc();
int sz = scc.size();
std::cout << sz << '\n';
for (int i = 0; i < sz; ++i) {
std::cout << scc[i].size();
for (auto v : scc[i]) {
std::cout << " " << v;
}
std::cout << '\n';
}
}
#line 1 "test/graph/scc_graph.test.cpp"
#define PROBLEM "https://judge.yosupo.jp/problem/scc"
#line 2 "graph/scc_graph.hpp"
#include <algorithm>
#include <vector>
#line 2 "data_structure/simple_csr.hpp"
#include <ranges>
#include <utility>
#line 6 "data_structure/simple_csr.hpp"
namespace ebi {
template <class E> struct simple_csr {
simple_csr() = default;
simple_csr(int n, const std::vector<std::pair<int, E>>& elements)
: start(n + 1, 0), elist(elements.size()) {
for (auto e : elements) {
start[e.first + 1]++;
}
for (auto i : std::views::iota(0, n)) {
start[i + 1] += start[i];
}
auto counter = start;
for (auto [i, e] : elements) {
elist[counter[i]++] = e;
}
}
simple_csr(const std::vector<std::vector<E>>& es)
: start(es.size() + 1, 0) {
int n = es.size();
for (auto i : std::views::iota(0, n)) {
start[i + 1] = (int)es[i].size() + start[i];
}
elist.resize(start.back());
for (auto i : std::views::iota(0, n)) {
std::copy(es[i].begin(), es[i].end(), elist.begin() + start[i]);
}
}
int size() const {
return (int)start.size() - 1;
}
const auto operator[](int i) const {
return std::ranges::subrange(elist.begin() + start[i],
elist.begin() + start[i + 1]);
}
auto operator[](int i) {
return std::ranges::subrange(elist.begin() + start[i],
elist.begin() + start[i + 1]);
}
const auto operator()(int i, int l, int r) const {
return std::ranges::subrange(elist.begin() + start[i] + l,
elist.begin() + start[i + 1] + r);
}
auto operator()(int i, int l, int r) {
return std::ranges::subrange(elist.begin() + start[i] + l,
elist.begin() + start[i + 1] + r);
}
private:
std::vector<int> start;
std::vector<E> elist;
};
} // namespace ebi
#line 2 "graph/base.hpp"
#include <cassert>
#include <iostream>
#line 7 "graph/base.hpp"
#line 9 "graph/base.hpp"
namespace ebi {
template <class T> struct Edge {
int from, to;
T cost;
int id;
};
template <class E> struct Graph {
using cost_type = E;
using edge_type = Edge<cost_type>;
Graph(int n_) : n(n_) {}
Graph() = default;
void add_edge(int u, int v, cost_type c) {
assert(!prepared && u < n && v < n);
buff.emplace_back(u, edge_type{u, v, c, m});
edges.emplace_back(edge_type{u, v, c, m++});
}
void add_undirected_edge(int u, int v, cost_type c) {
assert(!prepared && u < n && v < n);
buff.emplace_back(u, edge_type{u, v, c, m});
buff.emplace_back(v, edge_type{v, u, c, m});
edges.emplace_back(edge_type{u, v, c, m});
m++;
}
void read_tree(int offset = 1, bool is_weighted = false) {
read_graph(n - 1, offset, false, is_weighted);
}
void read_parents(int offset = 1) {
for (auto i : std::views::iota(1, n)) {
int p;
std::cin >> p;
p -= offset;
add_undirected_edge(p, i, 1);
}
build();
}
void read_graph(int e, int offset = 1, bool is_directed = false,
bool is_weighted = false) {
for (int i = 0; i < e; i++) {
int u, v;
std::cin >> u >> v;
u -= offset;
v -= offset;
if (is_weighted) {
cost_type c;
std::cin >> c;
if (is_directed) {
add_edge(u, v, c);
} else {
add_undirected_edge(u, v, c);
}
} else {
if (is_directed) {
add_edge(u, v, 1);
} else {
add_undirected_edge(u, v, 1);
}
}
}
build();
}
void build() {
assert(!prepared);
csr = simple_csr<edge_type>(n, buff);
buff.clear();
prepared = true;
}
int size() const {
return n;
}
int node_number() const {
return n;
}
int edge_number() const {
return m;
}
edge_type get_edge(int i) const {
assert(prepared);
return edges[i];
}
std::vector<edge_type> get_edges() const {
assert(prepared);
return edges;
}
const auto operator[](int i) const {
assert(prepared);
return csr[i];
}
auto operator[](int i) {
assert(prepared);
return csr[i];
}
private:
int n, m = 0;
std::vector<std::pair<int, edge_type>> buff;
std::vector<edge_type> edges;
simple_csr<edge_type> csr;
bool prepared = false;
};
} // namespace ebi
#line 8 "graph/scc_graph.hpp"
namespace ebi {
struct scc_graph {
private:
std::vector<std::pair<int, int>> edges, redges;
simple_csr<int> g, rg;
int n, k;
std::vector<int> vs, cmp;
std::vector<bool> seen;
void dfs(int v) {
seen[v] = true;
for (auto &nv : g[v]) {
if (!seen[nv]) dfs(nv);
}
vs.emplace_back(v);
}
void rdfs(int v) {
cmp[v] = k;
for (auto nv : rg[v]) {
if (cmp[nv] < 0) {
rdfs(nv);
}
}
}
public:
scc_graph(int n_) : n(n_) {}
void add_edge(int from, int to) {
edges.emplace_back(from, to);
redges.emplace_back(to, from);
}
std::vector<std::vector<int>> scc() {
g = simple_csr<int>(n, edges);
rg = simple_csr<int>(n, redges);
edges.clear();
redges.clear();
seen.assign(n, false);
for (int i = 0; i < n; i++) {
if (!seen[i]) {
dfs(i);
}
}
std::reverse(vs.begin(), vs.end());
cmp.assign(n, -1);
k = 0;
for (auto &v : vs) {
if (cmp[v] < 0) {
rdfs(v);
k++;
}
}
std::vector<std::vector<int>> res(k);
for (int i = 0; i < n; i++) {
res[cmp[i]].emplace_back(i);
}
return res;
}
std::vector<int> scc_id() {
return cmp;
}
bool same(int u, int v) {
return cmp[u] == cmp[v];
}
Graph<int> create_graph() {
std::vector<std::pair<int, int>> es;
for (int i = 0; i < n; i++) {
int v = cmp[i];
for (auto to : g[i]) {
int nv = cmp[to];
if (v == nv) continue;
es.emplace_back(v, nv);
}
}
std::sort(es.begin(), es.end());
es.erase(std::unique(es.begin(), es.end()), es.end());
Graph<int> t(k);
for (auto [v, nv] : es) {
t.add_edge(v, nv, 1);
}
t.build();
return t;
}
};
} // namespace ebi
#line 4 "test/graph/scc_graph.test.cpp"
#line 6 "test/graph/scc_graph.test.cpp"
int main() {
int n, m;
std::cin >> n >> m;
ebi::scc_graph g(n);
for (int i = 0; i < m; ++i) {
int a, b;
std::cin >> a >> b;
g.add_edge(a, b);
}
auto scc = g.scc();
int sz = scc.size();
std::cout << sz << '\n';
for (int i = 0; i < sz; ++i) {
std::cout << scc[i].size();
for (auto v : scc[i]) {
std::cout << " " << v;
}
std::cout << '\n';
}
}