Library

This documentation is automatically generated by online-judge-tools/verification-helper

View the Project on GitHub ebi-fly13/Library

:heavy_check_mark: test/graph/Two_Edge_Connected_Components.test.cpp

Depends on

Code

#define PROBLEM "https://judge.yosupo.jp/problem/two_edge_connected_components"

#include "../../graph/two_edge_connected_components.hpp"

#include <iostream>
#include <vector>

#include "../../graph/base.hpp"

int main() {
    int n, m;
    std::cin >> n >> m;
    ebi::Graph<int> g(n);
    g.read_graph(m, 0);
    ebi::two_edge_connected_components tecc(g);
    auto groups = tecc.groups();
    std::cout << groups.size() << '\n';
    for (auto group : groups) {
        std::cout << group.size();
        for (auto v : group) {
            std::cout << " " << v;
        }
        std::cout << '\n';
    }
}
#line 1 "test/graph/Two_Edge_Connected_Components.test.cpp"
#define PROBLEM "https://judge.yosupo.jp/problem/two_edge_connected_components"

#line 2 "graph/two_edge_connected_components.hpp"

#line 2 "graph/low_link.hpp"

#include <algorithm>
#include <utility>
#include <vector>

#line 2 "graph/base.hpp"

#include <cassert>
#include <iostream>
#include <ranges>
#line 7 "graph/base.hpp"

#line 2 "data_structure/simple_csr.hpp"

#line 6 "data_structure/simple_csr.hpp"

namespace ebi {

template <class E> struct simple_csr {
    simple_csr() = default;

    simple_csr(int n, const std::vector<std::pair<int, E>>& elements)
        : start(n + 1, 0), elist(elements.size()) {
        for (auto e : elements) {
            start[e.first + 1]++;
        }
        for (auto i : std::views::iota(0, n)) {
            start[i + 1] += start[i];
        }
        auto counter = start;
        for (auto [i, e] : elements) {
            elist[counter[i]++] = e;
        }
    }

    simple_csr(const std::vector<std::vector<E>>& es)
        : start(es.size() + 1, 0) {
        int n = es.size();
        for (auto i : std::views::iota(0, n)) {
            start[i + 1] = (int)es[i].size() + start[i];
        }
        elist.resize(start.back());
        for (auto i : std::views::iota(0, n)) {
            std::copy(es[i].begin(), es[i].end(), elist.begin() + start[i]);
        }
    }

    int size() const {
        return (int)start.size() - 1;
    }

    const auto operator[](int i) const {
        return std::ranges::subrange(elist.begin() + start[i],
                                     elist.begin() + start[i + 1]);
    }
    auto operator[](int i) {
        return std::ranges::subrange(elist.begin() + start[i],
                                     elist.begin() + start[i + 1]);
    }

    const auto operator()(int i, int l, int r) const {
        return std::ranges::subrange(elist.begin() + start[i] + l,
                                     elist.begin() + start[i + 1] + r);
    }
    auto operator()(int i, int l, int r) {
        return std::ranges::subrange(elist.begin() + start[i] + l,
                                     elist.begin() + start[i + 1] + r);
    }

  private:
    std::vector<int> start;
    std::vector<E> elist;
};

}  // namespace ebi
#line 9 "graph/base.hpp"

namespace ebi {

template <class T> struct Edge {
    int from, to;
    T cost;
    int id;
};

template <class E> struct Graph {
    using cost_type = E;
    using edge_type = Edge<cost_type>;

    Graph(int n_) : n(n_) {}

    Graph() = default;

    void add_edge(int u, int v, cost_type c) {
        buff.emplace_back(u, edge_type{u, v, c, m});
        edges.emplace_back(edge_type{u, v, c, m++});
    }

    void add_undirected_edge(int u, int v, cost_type c) {
        buff.emplace_back(u, edge_type{u, v, c, m});
        buff.emplace_back(v, edge_type{v, u, c, m});
        edges.emplace_back(edge_type{u, v, c, m});
        m++;
    }

    void read_tree(int offset = 1, bool is_weighted = false) {
        read_graph(n - 1, offset, false, is_weighted);
    }

    void read_parents(int offset = 1) {
        for (auto i : std::views::iota(1, n)) {
            int p;
            std::cin >> p;
            p -= offset;
            add_undirected_edge(p, i, 1);
        }
        build();
    }

    void read_graph(int e, int offset = 1, bool is_directed = false,
                    bool is_weighted = false) {
        for (int i = 0; i < e; i++) {
            int u, v;
            std::cin >> u >> v;
            u -= offset;
            v -= offset;
            if (is_weighted) {
                cost_type c;
                std::cin >> c;
                if (is_directed) {
                    add_edge(u, v, c);
                } else {
                    add_undirected_edge(u, v, c);
                }
            } else {
                if (is_directed) {
                    add_edge(u, v, 1);
                } else {
                    add_undirected_edge(u, v, 1);
                }
            }
        }
        build();
    }

    void build() {
        assert(!prepared);
        csr = simple_csr<edge_type>(n, buff);
        buff.clear();
        prepared = true;
    }

    int size() const {
        return n;
    }

    int node_number() const {
        return n;
    }

    int edge_number() const {
        return m;
    }

    edge_type get_edge(int i) const {
        return edges[i];
    }

    std::vector<edge_type> get_edges() const {
        return edges;
    }

    const auto operator[](int i) const {
        return csr[i];
    }
    auto operator[](int i) {
        return csr[i];
    }

  private:
    int n, m = 0;

    std::vector<std::pair<int,edge_type>> buff;

    std::vector<edge_type> edges;
    simple_csr<edge_type> csr;
    bool prepared = false;
};

}  // namespace ebi
#line 8 "graph/low_link.hpp"

namespace ebi {

template <class T> struct low_link {
  private:
    void dfs(int v, int par = -1) {
        static int k = 0;
        low[v] = ord[v] = k++;
        int cnt = 0;
        bool is_arti = false, is_second = false;
        for (auto e : g[v]) {
            int nv = e.to;
            if (ord[nv] == -1) {
                cnt++;
                dfs(nv, v);
                low[v] = std::min(low[v], low[nv]);
                is_arti |= (par != -1) && (low[nv] >= ord[v]);
                if (ord[v] < low[nv]) {
                    _bridge.emplace_back(std::minmax(v, nv));
                }
            } else if (nv != par || is_second) {
                low[v] = std::min(low[v], ord[nv]);
            } else {
                is_second = true;
            }
        }
        is_arti |= par == -1 && cnt > 1;
        if (is_arti) _articulation.emplace_back(v);
    }

  public:
    low_link(const Graph<T> &g) : n(g.size()), g(g), ord(n, -1), low(n) {
        for (int i = 0; i < n; i++) {
            if (ord[i] == -1) dfs(i);
        }
    }

    std::vector<int> articulation() const {
        return _articulation;
    }

    std::vector<std::pair<int, int>> bridge() const {
        return _bridge;
    }

  protected:
    int n;
    Graph<T> g;
    std::vector<int> ord, low, _articulation;
    std::vector<std::pair<int, int>> _bridge;
};

}  // namespace ebi
#line 4 "graph/two_edge_connected_components.hpp"

namespace ebi {

template <class T> struct two_edge_connected_components : low_link<T> {
  private:
    void dfs(int v, int par = -1) {
        if (par != -1 && this->ord[par] >= this->low[v])
            _id[v] = _id[par];
        else
            _id[v] = k++;
        for (auto e : this->g[v]) {
            if (_id[e.to] == -1) dfs(e.to, v);
        }
    }

  public:
    two_edge_connected_components(const Graph<T> &_g)
        : low_link<T>(_g), _id(this->n, -1) {
        for (int i = 0; i < this->n; i++) {
            if (_id[i] == -1) dfs(i);
        }
    }

    Graph<int> tecc() const {
        Graph<int> t(k);
        for (auto [u, v] : this->_bridge) {
            u = _id[u];
            v = _id[v];
            t.add_edge(u, v, 1);
            t.add_edge(v, u, 1);
        }
        t.build();
        return t;
    }

    std::vector<std::vector<int>> groups() const {
        std::vector _groups(k, std::vector<int>());
        for (int i = 0; i < this->n; i++) {
            _groups[_id[i]].emplace_back(i);
        }
        return _groups;
    }

    int id(int v) const {
        return _id[v];
    }

  private:
    int k = 0;
    std::vector<int> _id;
};

}  // namespace ebi
#line 4 "test/graph/Two_Edge_Connected_Components.test.cpp"

#line 7 "test/graph/Two_Edge_Connected_Components.test.cpp"

#line 9 "test/graph/Two_Edge_Connected_Components.test.cpp"

int main() {
    int n, m;
    std::cin >> n >> m;
    ebi::Graph<int> g(n);
    g.read_graph(m, 0);
    ebi::two_edge_connected_components tecc(g);
    auto groups = tecc.groups();
    std::cout << groups.size() << '\n';
    for (auto group : groups) {
        std::cout << group.size();
        for (auto v : group) {
            std::cout << " " << v;
        }
        std::cout << '\n';
    }
}
Back to top page