This documentation is automatically generated by online-judge-tools/verification-helper
#define PROBLEM "https://judge.yosupo.jp/problem/gcd_convolution"
#include "../../convolution/gcd_convolution.hpp"
#include <iostream>
#include <vector>
#include "../../modint/modint.hpp"
using mint = ebi::modint998244353;
int main() {
int n;
std::cin >> n;
std::vector<mint> a(n + 1), b(n + 1);
for (int i = 1; i <= n; i++) {
std::cin >> a[i];
}
for (int i = 1; i <= n; i++) {
std::cin >> b[i];
}
auto c = ebi::gcd_convolution(a, b);
for (int i = 1; i <= n; i++) {
std::cout << c[i].val() << " \n"[i == n];
}
}
#line 1 "test/convolution/Gcd_Convolution.test.cpp"
#define PROBLEM "https://judge.yosupo.jp/problem/gcd_convolution"
#line 2 "convolution/gcd_convolution.hpp"
#line 2 "math/multiple_transform.hpp"
#include <vector>
#line 2 "math/eratosthenes_sieve.hpp"
#include <cassert>
#include <cstdint>
#line 6 "math/eratosthenes_sieve.hpp"
/*
reference: https://37zigen.com/sieve-eratosthenes/
*/
namespace ebi {
struct eratosthenes_sieve {
private:
using i64 = std::int_fast64_t;
int n;
std::vector<bool> table;
public:
eratosthenes_sieve(int _n) : n(_n), table(std::vector<bool>(n + 1, true)) {
table[1] = false;
for (i64 i = 2; i * i <= n; i++) {
if (!table[i]) continue;
for (i64 j = i; i * j <= n; j++) {
table[i * j] = false;
}
}
}
bool is_prime(int p) {
return table[p];
}
std::vector<int> prime_table(int m = -1) {
if (m < 0) m = n;
std::vector<int> prime;
for (int i = 2; i <= m; i++) {
if (table[i]) prime.emplace_back(i);
}
return prime;
}
};
} // namespace ebi
#line 6 "math/multiple_transform.hpp"
namespace ebi {
struct multiple_transform {
multiple_transform() = default;
template <class mint>
static std::vector<mint> zeta_transform(const std::vector<mint> &f) {
int n = f.size() - 1;
auto F = f;
if (m < n) {
while (m < n) m <<= 1;
eratosthenes_sieve sieve(m);
primes = sieve.prime_table();
}
for (const auto &p : primes) {
if (n < p) break;
for (int i = n / p; i > 0; i--) F[i] += F[i * p];
}
return F;
}
template <class mint>
static std::vector<mint> mobius_transform(const std::vector<mint> &F) {
int n = F.size() - 1;
auto f = F;
if (m < n) {
while (m < n) m <<= 1;
eratosthenes_sieve sieve(m);
primes = sieve.prime_table();
}
for (const auto &p : primes) {
if (n < p) break;
for (int i = 1; i * p <= n; i++) f[i] -= f[i * p];
}
return f;
}
private:
static int m;
static std::vector<int> primes;
};
int multiple_transform::m = 4;
std::vector<int> multiple_transform::primes = {2, 3};
} // namespace ebi
#line 4 "convolution/gcd_convolution.hpp"
namespace ebi {
template <class mint>
std::vector<mint> gcd_convolution(const std::vector<mint> &a,
const std::vector<mint> &b) {
int n = a.size();
assert(a.size() == b.size());
auto ra = multiple_transform::zeta_transform(a);
auto rb = multiple_transform::zeta_transform(b);
for (int i = 0; i < n; i++) {
ra[i] *= rb[i];
}
return multiple_transform::mobius_transform(ra);
}
} // namespace ebi
#line 4 "test/convolution/Gcd_Convolution.test.cpp"
#include <iostream>
#line 7 "test/convolution/Gcd_Convolution.test.cpp"
#line 2 "modint/modint.hpp"
#line 5 "modint/modint.hpp"
#line 2 "modint/base.hpp"
#include <concepts>
#line 5 "modint/base.hpp"
#include <utility>
namespace ebi {
template <class T>
concept Modint = requires(T a, T b) {
a + b;
a - b;
a * b;
a / b;
a.inv();
a.val();
a.pow(std::declval<long long>());
T::mod();
};
template <Modint mint> std::istream &operator>>(std::istream &os, mint &a) {
long long x;
os >> x;
a = x;
return os;
}
template <Modint mint>
std::ostream &operator<<(std::ostream &os, const mint &a) {
return os << a.val();
}
} // namespace ebi
#line 7 "modint/modint.hpp"
namespace ebi {
template <int m> struct static_modint {
private:
using modint = static_modint;
public:
static constexpr int mod() {
return m;
}
static constexpr modint raw(int v) {
modint x;
x._v = v;
return x;
}
constexpr static_modint() : _v(0) {}
template <std::signed_integral T> constexpr static_modint(T v) {
long long x = (long long)(v % (long long)(umod()));
if (x < 0) x += umod();
_v = (unsigned int)(x);
}
template <std::unsigned_integral T> constexpr static_modint(T v) {
_v = (unsigned int)(v % umod());
}
constexpr unsigned int val() const {
return _v;
}
constexpr unsigned int value() const {
return val();
}
constexpr modint &operator++() {
_v++;
if (_v == umod()) _v = 0;
return *this;
}
constexpr modint &operator--() {
if (_v == 0) _v = umod();
_v--;
return *this;
}
constexpr modint operator++(int) {
modint res = *this;
++*this;
return res;
}
constexpr modint operator--(int) {
modint res = *this;
--*this;
return res;
}
constexpr modint &operator+=(const modint &rhs) {
_v += rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
constexpr modint &operator-=(const modint &rhs) {
_v -= rhs._v;
if (_v >= umod()) _v += umod();
return *this;
}
constexpr modint &operator*=(const modint &rhs) {
unsigned long long x = _v;
x *= rhs._v;
_v = (unsigned int)(x % (unsigned long long)umod());
return *this;
}
constexpr modint &operator/=(const modint &rhs) {
return *this = *this * rhs.inv();
}
constexpr modint operator+() const {
return *this;
}
constexpr modint operator-() const {
return modint() - *this;
}
constexpr modint pow(long long n) const {
assert(0 <= n);
modint x = *this, res = 1;
while (n) {
if (n & 1) res *= x;
x *= x;
n >>= 1;
}
return res;
}
constexpr modint inv() const {
assert(_v);
return pow(umod() - 2);
}
friend modint operator+(const modint &lhs, const modint &rhs) {
return modint(lhs) += rhs;
}
friend modint operator-(const modint &lhs, const modint &rhs) {
return modint(lhs) -= rhs;
}
friend modint operator*(const modint &lhs, const modint &rhs) {
return modint(lhs) *= rhs;
}
friend modint operator/(const modint &lhs, const modint &rhs) {
return modint(lhs) /= rhs;
}
friend bool operator==(const modint &lhs, const modint &rhs) {
return lhs.val() == rhs.val();
}
friend bool operator!=(const modint &lhs, const modint &rhs) {
return !(lhs == rhs);
}
private:
unsigned int _v = 0;
static constexpr unsigned int umod() {
return m;
}
};
using modint998244353 = static_modint<998244353>;
using modint1000000007 = static_modint<1000000007>;
} // namespace ebi
#line 9 "test/convolution/Gcd_Convolution.test.cpp"
using mint = ebi::modint998244353;
int main() {
int n;
std::cin >> n;
std::vector<mint> a(n + 1), b(n + 1);
for (int i = 1; i <= n; i++) {
std::cin >> a[i];
}
for (int i = 1; i <= n; i++) {
std::cin >> b[i];
}
auto c = ebi::gcd_convolution(a, b);
for (int i = 1; i <= n; i++) {
std::cout << c[i].val() << " \n"[i == n];
}
}