This documentation is automatically generated by online-judge-tools/verification-helper
#include "math/sum_of_powers_iota.hpp"
$\sum_{i = 0}^{n-1} i ^ k$ を $O(k)$ で求める。
#pragma once
#include <cassert>
#include "../math/lagrange_interpolation.hpp"
#include "../math/linear_sieve.hpp"
#include "../modint/base.hpp"
namespace ebi {
template <Modint mint> mint sum_of_powers_iota(long long n, int k) {
assert(n > 0 && k >= 0);
linear_sieve sieve(k + 1);
auto pow_table = sieve.pow_table<mint>(k + 1, k);
for (int i = 0; i < k + 1; i++) {
pow_table[i + 1] += pow_table[i];
}
return lagrange_interpolation(pow_table, n - 1);
}
} // namespace ebi
#line 2 "math/sum_of_powers_iota.hpp"
#include <cassert>
#line 2 "math/lagrange_interpolation.hpp"
#include <vector>
/*
reference: https://atcoder.jp/contests/abc208/editorial/2195
verify: https://atcoder.jp/contests/abc208/tasks/abc208_f
*/
namespace ebi {
template <class mint>
mint lagrange_interpolation(const std::vector<mint> &f, long long n) {
const int d = int(f.size()) - 1; // Nのd次以下の多項式
mint fact = 1;
std::vector<mint> inv_fact(d + 1);
for (int i = 1; i < d + 1; ++i) {
fact *= i;
}
inv_fact[d] = fact.inv();
for (int i = d; i > 0; i--) {
inv_fact[i - 1] = inv_fact[i] * i;
}
std::vector<mint> l(d + 1), r(d + 1);
l[0] = 1;
for (int i = 0; i < d; ++i) {
l[i + 1] = l[i] * (n - i);
}
r[d] = 1;
for (int i = d; i > 0; --i) {
r[i - 1] = r[i] * (n - i);
}
mint res = 0;
for (int i = 0; i < d + 1; ++i) {
res += mint((d - i) % 2 == 1 ? -1 : 1) * f[i] * l[i] * r[i] *
inv_fact[i] * inv_fact[d - i];
}
return res;
}
} // namespace ebi
#line 2 "math/linear_sieve.hpp"
#line 2 "modint/base.hpp"
#include <concepts>
#include <iostream>
#include <utility>
namespace ebi {
template <class T>
concept Modint = requires(T a, T b) {
a + b;
a - b;
a * b;
a / b;
a.inv();
a.val();
a.pow(std::declval<long long>());
T::mod();
};
template <Modint mint> std::istream &operator>>(std::istream &os, mint &a) {
long long x;
os >> x;
a = x;
return os;
}
template <Modint mint>
std::ostream &operator<<(std::ostream &os, const mint &a) {
return os << a.val();
}
} // namespace ebi
#line 2 "template/int_alias.hpp"
#include <cstdint>
namespace ebi {
using ld = long double;
using std::size_t;
using i8 = std::int8_t;
using u8 = std::uint8_t;
using i16 = std::int16_t;
using u16 = std::uint16_t;
using i32 = std::int32_t;
using u32 = std::uint32_t;
using i64 = std::int64_t;
using u64 = std::uint64_t;
using i128 = __int128_t;
using u128 = __uint128_t;
} // namespace ebi
#line 5 "math/linear_sieve.hpp"
/*
reference: https://37zigen.com/linear-sieve/
verify: https://atcoder.jp/contests/abc162/submissions/25095562
*/
#line 13 "math/linear_sieve.hpp"
namespace ebi {
struct linear_sieve {
private:
using u64 = std::uint64_t;
int n;
std::vector<int> sieve;
std::vector<int> prime;
public:
linear_sieve(int _n) : n(_n), sieve(std::vector<int>(_n + 1, -1)) {
for (int i = 2; i <= n; i++) {
if (sieve[i] < 0) {
sieve[i] = i;
prime.emplace_back(i);
}
for (auto p : prime) {
if (u64(p) * u64(i) > u64(n) || p > sieve[i]) break;
sieve[p * i] = p;
}
}
}
std::vector<int> prime_table() const {
return prime;
}
std::vector<std::pair<int, int>> prime_power_table(int m) const {
assert(m <= n);
std::vector<std::pair<int, int>> table(m + 1, {1, 1});
for (int i = 2; i <= m; i++) {
int p = sieve[i];
table[i] = {p, p};
if (sieve[i / p] == p) {
table[i] = table[i / p];
table[i].second *= p;
}
}
return table;
}
std::vector<std::pair<int, int>> factorize(int x) {
assert(x <= n);
std::vector<std::pair<int, int>> res;
while (x > 1) {
int p = sieve[x];
int exp = 0;
if (p < 0) {
res.emplace_back(x, 1);
break;
}
while (sieve[x] == p) {
x /= p;
exp++;
}
res.emplace_back(p, exp);
}
return res;
}
std::vector<int> divisors(int x) {
assert(x <= n);
std::vector<int> res;
res.emplace_back(1);
auto pf = factorize(x);
for (auto p : pf) {
int sz = (int)res.size();
for (int i = 0; i < sz; i++) {
int ret = 1;
for (int j = 0; j < p.second; j++) {
ret *= p.first;
res.emplace_back(res[i] * ret);
}
}
}
return res;
}
template <class T> std::vector<T> fast_zeta(const std::vector<T> &f) {
std::vector<T> F = f;
int sz = f.size();
assert(sz <= n + 1);
for (int i = 2; i < sz; i++) {
if (sieve[i] != i) continue;
for (int j = (sz - 1) / i; j >= 1; j--) {
F[j] += F[j * i];
}
}
return F;
}
template <class T> std::vector<T> fast_mobius(const std::vector<T> &F) {
std::vector<T> f = F;
int sz = F.size();
assert(sz <= n + 1);
for (int i = 2; i < sz; i++) {
if (sieve[i] != i) continue;
for (int j = 1; j * i < sz; j++) {
f[j] -= f[j * i];
}
}
return f;
}
template <Modint mint> std::vector<mint> pow_table(int m, int k) {
assert(m <= n && k >= 0);
std::vector<mint> table(m + 1, 1);
table[0] = (k == 0);
for (int i = 2; i <= m; i++) {
if (sieve[i] == i) {
table[i] = mint(i).pow(k);
continue;
}
table[i] = table[sieve[i]] * table[i / sieve[i]];
}
return table;
}
template <Modint mint> std::vector<mint> inv_table() {
return pow_table(mint::mod() - 2);
}
};
} // namespace ebi
#line 8 "math/sum_of_powers_iota.hpp"
namespace ebi {
template <Modint mint> mint sum_of_powers_iota(long long n, int k) {
assert(n > 0 && k >= 0);
linear_sieve sieve(k + 1);
auto pow_table = sieve.pow_table<mint>(k + 1, k);
for (int i = 0; i < k + 1; i++) {
pow_table[i + 1] += pow_table[i];
}
return lagrange_interpolation(pow_table, n - 1);
}
} // namespace ebi