Library

This documentation is automatically generated by online-judge-tools/verification-helper

View the Project on GitHub ebi-fly13/Library

:warning: Minimum Steiner Tree
(graph/minimum_steiner_tree.hpp)

説明

最小シュタイナー木を求める。 $O(3^K N + 2^K (N + M) \log{N})$

Depends on

Code

#pragma once

#include <functional>
#include <limits>
#include <queue>
#include <vector>

#include "../graph/base.hpp"

namespace ebi {

template <class T>
std::vector<T> minimum_steiner_tree(const Graph<T> &g,
                                    const std::vector<int> &vs) {
    int n = g.node_number();
    int k = (int)vs.size();
    std::vector dp(1 << k, std::vector<T>(n, std::numeric_limits<T>::max()));
    for (int i = 0; auto v : vs) {
        dp[1 << i][v] = 0;
        i++;
    }
    for (int s = 1; s < (1 << k); s++) {
        for (int t = (s - 1) & s; t > 0; t = (t - 1) & s) {
            for (int i = 0; i < n; i++) {
                dp[s][i] = std::min(dp[s][i], dp[s ^ t][i] + dp[t][i]);
            }
        }
        std::priority_queue<std::pair<T, int>, std::vector<std::pair<T, int>>,
                            std::greater<>>
            que;
        for (auto v : vs) {
            que.push({dp[s][v], v});
        }
        while (!que.empty()) {
            auto [ret, v] = que.top();
            que.pop();
            if (dp[s][v] < ret) continue;
            for (auto e : g[v]) {
                if (dp[s][e.to] > dp[s][v] + e.cost) {
                    dp[s][e.to] = dp[s][v] + e.cost;
                    que.push({dp[s][e.to], e.to});
                }
            }
        }
    }
    return dp[(1 << k) - 1];
}

}  // namespace ebi
#line 2 "graph/minimum_steiner_tree.hpp"

#include <functional>
#include <limits>
#include <queue>
#include <vector>

#line 2 "graph/base.hpp"

#include <cassert>
#include <iostream>
#include <ranges>
#line 7 "graph/base.hpp"

#line 2 "data_structure/simple_csr.hpp"

#line 4 "data_structure/simple_csr.hpp"
#include <utility>
#line 6 "data_structure/simple_csr.hpp"

namespace ebi {

template <class E> struct simple_csr {
    simple_csr() = default;

    simple_csr(int n, const std::vector<std::pair<int, E>>& elements)
        : start(n + 1, 0), elist(elements.size()) {
        for (auto e : elements) {
            start[e.first + 1]++;
        }
        for (auto i : std::views::iota(0, n)) {
            start[i + 1] += start[i];
        }
        auto counter = start;
        for (auto [i, e] : elements) {
            elist[counter[i]++] = e;
        }
    }

    simple_csr(const std::vector<std::vector<E>>& es)
        : start(es.size() + 1, 0) {
        int n = es.size();
        for (auto i : std::views::iota(0, n)) {
            start[i + 1] = (int)es[i].size() + start[i];
        }
        elist.resize(start.back());
        for (auto i : std::views::iota(0, n)) {
            std::copy(es[i].begin(), es[i].end(), elist.begin() + start[i]);
        }
    }

    int size() const {
        return (int)start.size() - 1;
    }

    const auto operator[](int i) const {
        return std::ranges::subrange(elist.begin() + start[i],
                                     elist.begin() + start[i + 1]);
    }
    auto operator[](int i) {
        return std::ranges::subrange(elist.begin() + start[i],
                                     elist.begin() + start[i + 1]);
    }

    const auto operator()(int i, int l, int r) const {
        return std::ranges::subrange(elist.begin() + start[i] + l,
                                     elist.begin() + start[i + 1] + r);
    }
    auto operator()(int i, int l, int r) {
        return std::ranges::subrange(elist.begin() + start[i] + l,
                                     elist.begin() + start[i + 1] + r);
    }

  private:
    std::vector<int> start;
    std::vector<E> elist;
};

}  // namespace ebi
#line 9 "graph/base.hpp"

namespace ebi {

template <class T> struct Edge {
    int from, to;
    T cost;
    int id;
};

template <class E> struct Graph {
    using cost_type = E;
    using edge_type = Edge<cost_type>;

    Graph(int n_) : n(n_) {}

    Graph() = default;

    void add_edge(int u, int v, cost_type c) {
        buff.emplace_back(u, edge_type{u, v, c, m});
        edges.emplace_back(edge_type{u, v, c, m++});
    }

    void add_undirected_edge(int u, int v, cost_type c) {
        buff.emplace_back(u, edge_type{u, v, c, m});
        buff.emplace_back(v, edge_type{v, u, c, m});
        edges.emplace_back(edge_type{u, v, c, m});
        m++;
    }

    void read_tree(int offset = 1, bool is_weighted = false) {
        read_graph(n - 1, offset, false, is_weighted);
    }

    void read_parents(int offset = 1) {
        for (auto i : std::views::iota(1, n)) {
            int p;
            std::cin >> p;
            p -= offset;
            add_undirected_edge(p, i, 1);
        }
        build();
    }

    void read_graph(int e, int offset = 1, bool is_directed = false,
                    bool is_weighted = false) {
        for (int i = 0; i < e; i++) {
            int u, v;
            std::cin >> u >> v;
            u -= offset;
            v -= offset;
            if (is_weighted) {
                cost_type c;
                std::cin >> c;
                if (is_directed) {
                    add_edge(u, v, c);
                } else {
                    add_undirected_edge(u, v, c);
                }
            } else {
                if (is_directed) {
                    add_edge(u, v, 1);
                } else {
                    add_undirected_edge(u, v, 1);
                }
            }
        }
        build();
    }

    void build() {
        assert(!prepared);
        csr = simple_csr<edge_type>(n, buff);
        buff.clear();
        prepared = true;
    }

    int size() const {
        return n;
    }

    int node_number() const {
        return n;
    }

    int edge_number() const {
        return m;
    }

    edge_type get_edge(int i) const {
        return edges[i];
    }

    std::vector<edge_type> get_edges() const {
        return edges;
    }

    const auto operator[](int i) const {
        return csr[i];
    }
    auto operator[](int i) {
        return csr[i];
    }

  private:
    int n, m = 0;

    std::vector<std::pair<int,edge_type>> buff;

    std::vector<edge_type> edges;
    simple_csr<edge_type> csr;
    bool prepared = false;
};

}  // namespace ebi
#line 9 "graph/minimum_steiner_tree.hpp"

namespace ebi {

template <class T>
std::vector<T> minimum_steiner_tree(const Graph<T> &g,
                                    const std::vector<int> &vs) {
    int n = g.node_number();
    int k = (int)vs.size();
    std::vector dp(1 << k, std::vector<T>(n, std::numeric_limits<T>::max()));
    for (int i = 0; auto v : vs) {
        dp[1 << i][v] = 0;
        i++;
    }
    for (int s = 1; s < (1 << k); s++) {
        for (int t = (s - 1) & s; t > 0; t = (t - 1) & s) {
            for (int i = 0; i < n; i++) {
                dp[s][i] = std::min(dp[s][i], dp[s ^ t][i] + dp[t][i]);
            }
        }
        std::priority_queue<std::pair<T, int>, std::vector<std::pair<T, int>>,
                            std::greater<>>
            que;
        for (auto v : vs) {
            que.push({dp[s][v], v});
        }
        while (!que.empty()) {
            auto [ret, v] = que.top();
            que.pop();
            if (dp[s][v] < ret) continue;
            for (auto e : g[v]) {
                if (dp[s][e.to] > dp[s][v] + e.cost) {
                    dp[s][e.to] = dp[s][v] + e.cost;
                    que.push({dp[s][e.to], e.to});
                }
            }
        }
    }
    return dp[(1 << k) - 1];
}

}  // namespace ebi
Back to top page