This documentation is automatically generated by online-judge-tools/verification-helper
#include "graph/dijkstra.hpp"
辺重みが非負のグラフについて、単一始点最短路を求める。 $O((N+M)\log{M})$
#pragma once
#include <algorithm>
#include <limits>
#include <queue>
#include <vector>
#include "../graph/base.hpp"
namespace ebi {
template <class T> std::vector<T> dijkstra(int s, const Graph<T> &g) {
typedef std::pair<T, int> P;
int n = g.node_number();
std::vector<T> d(n, std::numeric_limits<T>::max());
std::priority_queue<P, std::vector<P>, std::greater<P>> que;
que.push(P(0, s));
d[s] = 0;
while (!que.empty()) {
auto [ret, v] = que.top();
que.pop();
if (d[v] < ret) continue;
for (auto e : g[v]) {
if (d[e.to] > d[v] + e.cost) {
d[e.to] = d[v] + e.cost;
que.push(P(d[e.to], e.to));
}
}
}
return d;
}
template <class T> struct dijkstra_path {
public:
dijkstra_path(int s_, const Graph<T> &g)
: s(s_),
dist(g.size(), std::numeric_limits<T>::max()),
prev(g.size(), -1) {
dist[s] = 0;
using P = std::pair<T, int>;
std::priority_queue<P, std::vector<P>, std::greater<P>> que;
que.push(P(0, s));
while (!que.empty()) {
auto [ret, v] = que.top();
que.pop();
if (dist[v] < ret) continue;
for (auto e : g[v]) {
if (dist[e.to] > dist[v] + e.cost) {
dist[e.to] = dist[v] + e.cost;
prev[e.to] = v;
que.push(P(dist[e.to], e.to));
}
}
}
}
std::pair<T, std::vector<int>> shortest_path(int v) const {
if (dist[v] == std::numeric_limits<T>::max()) return {dist[v], {}};
std::vector<int> path;
int u = v;
while (u != s) {
path.emplace_back(u);
u = prev[u];
}
path.emplace_back(u);
std::reverse(path.begin(), path.end());
return {dist[v], path};
}
private:
int s;
std::vector<T> dist;
std::vector<int> prev;
};
} // namespace ebi
#line 2 "graph/dijkstra.hpp"
#include <algorithm>
#include <limits>
#include <queue>
#include <vector>
#line 2 "graph/base.hpp"
#include <cassert>
#include <iostream>
#include <ranges>
#line 7 "graph/base.hpp"
#line 2 "data_structure/simple_csr.hpp"
#line 4 "data_structure/simple_csr.hpp"
#include <utility>
#line 6 "data_structure/simple_csr.hpp"
namespace ebi {
template <class E> struct simple_csr {
simple_csr() = default;
simple_csr(int n, const std::vector<std::pair<int, E>>& elements)
: start(n + 1, 0), elist(elements.size()) {
for (auto e : elements) {
start[e.first + 1]++;
}
for (auto i : std::views::iota(0, n)) {
start[i + 1] += start[i];
}
auto counter = start;
for (auto [i, e] : elements) {
elist[counter[i]++] = e;
}
}
simple_csr(const std::vector<std::vector<E>>& es)
: start(es.size() + 1, 0) {
int n = es.size();
for (auto i : std::views::iota(0, n)) {
start[i + 1] = (int)es[i].size() + start[i];
}
elist.resize(start.back());
for (auto i : std::views::iota(0, n)) {
std::copy(es[i].begin(), es[i].end(), elist.begin() + start[i]);
}
}
int size() const {
return (int)start.size() - 1;
}
const auto operator[](int i) const {
return std::ranges::subrange(elist.begin() + start[i],
elist.begin() + start[i + 1]);
}
auto operator[](int i) {
return std::ranges::subrange(elist.begin() + start[i],
elist.begin() + start[i + 1]);
}
const auto operator()(int i, int l, int r) const {
return std::ranges::subrange(elist.begin() + start[i] + l,
elist.begin() + start[i + 1] + r);
}
auto operator()(int i, int l, int r) {
return std::ranges::subrange(elist.begin() + start[i] + l,
elist.begin() + start[i + 1] + r);
}
private:
std::vector<int> start;
std::vector<E> elist;
};
} // namespace ebi
#line 9 "graph/base.hpp"
namespace ebi {
template <class T> struct Edge {
int from, to;
T cost;
int id;
};
template <class E> struct Graph {
using cost_type = E;
using edge_type = Edge<cost_type>;
Graph(int n_) : n(n_) {}
Graph() = default;
void add_edge(int u, int v, cost_type c) {
assert(!prepared && u < n && v < n);
buff.emplace_back(u, edge_type{u, v, c, m});
edges.emplace_back(edge_type{u, v, c, m++});
}
void add_undirected_edge(int u, int v, cost_type c) {
assert(!prepared && u < n && v < n);
buff.emplace_back(u, edge_type{u, v, c, m});
buff.emplace_back(v, edge_type{v, u, c, m});
edges.emplace_back(edge_type{u, v, c, m});
m++;
}
void read_tree(int offset = 1, bool is_weighted = false) {
read_graph(n - 1, offset, false, is_weighted);
}
void read_parents(int offset = 1) {
for (auto i : std::views::iota(1, n)) {
int p;
std::cin >> p;
p -= offset;
add_undirected_edge(p, i, 1);
}
build();
}
void read_graph(int e, int offset = 1, bool is_directed = false,
bool is_weighted = false) {
for (int i = 0; i < e; i++) {
int u, v;
std::cin >> u >> v;
u -= offset;
v -= offset;
if (is_weighted) {
cost_type c;
std::cin >> c;
if (is_directed) {
add_edge(u, v, c);
} else {
add_undirected_edge(u, v, c);
}
} else {
if (is_directed) {
add_edge(u, v, 1);
} else {
add_undirected_edge(u, v, 1);
}
}
}
build();
}
void build() {
assert(!prepared);
csr = simple_csr<edge_type>(n, buff);
buff.clear();
prepared = true;
}
int size() const {
return n;
}
int node_number() const {
return n;
}
int edge_number() const {
return m;
}
edge_type get_edge(int i) const {
assert(prepared);
return edges[i];
}
std::vector<edge_type> get_edges() const {
assert(prepared);
return edges;
}
const auto operator[](int i) const {
assert(prepared);
return csr[i];
}
auto operator[](int i) {
assert(prepared);
return csr[i];
}
private:
int n, m = 0;
std::vector<std::pair<int, edge_type>> buff;
std::vector<edge_type> edges;
simple_csr<edge_type> csr;
bool prepared = false;
};
} // namespace ebi
#line 9 "graph/dijkstra.hpp"
namespace ebi {
template <class T> std::vector<T> dijkstra(int s, const Graph<T> &g) {
typedef std::pair<T, int> P;
int n = g.node_number();
std::vector<T> d(n, std::numeric_limits<T>::max());
std::priority_queue<P, std::vector<P>, std::greater<P>> que;
que.push(P(0, s));
d[s] = 0;
while (!que.empty()) {
auto [ret, v] = que.top();
que.pop();
if (d[v] < ret) continue;
for (auto e : g[v]) {
if (d[e.to] > d[v] + e.cost) {
d[e.to] = d[v] + e.cost;
que.push(P(d[e.to], e.to));
}
}
}
return d;
}
template <class T> struct dijkstra_path {
public:
dijkstra_path(int s_, const Graph<T> &g)
: s(s_),
dist(g.size(), std::numeric_limits<T>::max()),
prev(g.size(), -1) {
dist[s] = 0;
using P = std::pair<T, int>;
std::priority_queue<P, std::vector<P>, std::greater<P>> que;
que.push(P(0, s));
while (!que.empty()) {
auto [ret, v] = que.top();
que.pop();
if (dist[v] < ret) continue;
for (auto e : g[v]) {
if (dist[e.to] > dist[v] + e.cost) {
dist[e.to] = dist[v] + e.cost;
prev[e.to] = v;
que.push(P(dist[e.to], e.to));
}
}
}
}
std::pair<T, std::vector<int>> shortest_path(int v) const {
if (dist[v] == std::numeric_limits<T>::max()) return {dist[v], {}};
std::vector<int> path;
int u = v;
while (u != s) {
path.emplace_back(u);
u = prev[u];
}
path.emplace_back(u);
std::reverse(path.begin(), path.end());
return {dist[v], path};
}
private:
int s;
std::vector<T> dist;
std::vector<int> prev;
};
} // namespace ebi