This documentation is automatically generated by online-judge-tools/verification-helper
#include "graph/count_spanning_tree.hpp"
与えられたグラフについて、全域木の個数を数える。頂点数を $N$ として、 $O(N^3)$ 。
$g[i][j] := (i, j)の辺の本数$ とする。 全域木の個数を返す。
無向グラフ $g$ の全域木の個数を返す。
$g[i][j] := i から j への辺の本数$ とする。
根を $root$ としたときの有向全域木の個数を返す。 $in$ が true
のときは、全ての辺が根の方を向いている全域木を考える。 $in$ が false
のときは、根から全頂点に到達できる全域木を考える。
グラフ $g$ について、根を $root$ としたときの有向全域木の個数を返す。
#pragma once
#include <cassert>
#include <vector>
#include "../graph/base.hpp"
#include "../matrix/base.hpp"
#include "../modint/base.hpp"
namespace ebi {
template <Modint mint>
mint count_spanning_tree(const std::vector<std::vector<int>> &g) {
const int n = (int)g.size();
if (n == 1) return 1;
std::vector<int> deg(n, 0);
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
if (i == j) continue;
assert(g[i][j] == g[j][i]);
deg[i] += g[i][j];
}
}
matrix<mint> L(n - 1, n - 1, 0);
for (int i = 1; i < n; i++) {
for (int j = 1; j < n; j++) {
if (i == j)
L[i - 1][j - 1] = deg[i];
else
L[i - 1][j - 1] -= g[i][j];
}
}
return det(L);
}
template <Modint mint, class T> mint count_spanning_tree(const Graph<T> &g) {
int n = g.node_number();
if (n == 1) return 1;
std::vector a(n, std::vector<int>(n, 0));
for (int i = 0; i < n; i++) {
for (auto e : g[i]) {
a[i][e.to]++;
}
}
return count_spanning_tree<mint>(a);
}
template <Modint mint>
mint count_directed_spanning_tree(const std::vector<std::vector<int>> &g,
int root, bool in = false) {
const int n = (int)g.size();
if (n == 1) return 1;
std::vector<int> d(n, 0);
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
if (i != j) d[i] += in ? g[i][j] : g[j][i];
}
}
matrix<mint> L(n - 1, n - 1, 0);
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
int a = i, b = j;
if (a == root || b == root) continue;
if (root < a) a--;
if (root < b) b--;
if (a == b)
L[a][b] = d[i];
else
L[a][b] = in ? -g[i][j] : -g[j][i];
}
}
return det(L);
}
template <Modint mint, class T>
mint count_directed_spanning_tree(const Graph<T> &g, int root, bool in = false) {
const int n = g.node_number();
if (n == 1) return 1;
std::vector d(n, std::vector<int>(n, 0));
for (int i = 0; i < n; i++) {
for (auto e : g[i]) {
d[i][e.to]++;
}
}
return count_directed_spanning_tree<mint>(d, root, in);
}
} // namespace ebi
#line 2 "graph/count_spanning_tree.hpp"
#include <cassert>
#include <vector>
#line 2 "graph/base.hpp"
#line 4 "graph/base.hpp"
#include <iostream>
#include <ranges>
#line 7 "graph/base.hpp"
#line 2 "data_structure/simple_csr.hpp"
#line 4 "data_structure/simple_csr.hpp"
#include <utility>
#line 6 "data_structure/simple_csr.hpp"
namespace ebi {
template <class E> struct simple_csr {
simple_csr() = default;
simple_csr(int n, const std::vector<std::pair<int, E>>& elements)
: start(n + 1, 0), elist(elements.size()) {
for (auto e : elements) {
start[e.first + 1]++;
}
for (auto i : std::views::iota(0, n)) {
start[i + 1] += start[i];
}
auto counter = start;
for (auto [i, e] : elements) {
elist[counter[i]++] = e;
}
}
simple_csr(const std::vector<std::vector<E>>& es)
: start(es.size() + 1, 0) {
int n = es.size();
for (auto i : std::views::iota(0, n)) {
start[i + 1] = (int)es[i].size() + start[i];
}
elist.resize(start.back());
for (auto i : std::views::iota(0, n)) {
std::copy(es[i].begin(), es[i].end(), elist.begin() + start[i]);
}
}
int size() const {
return (int)start.size() - 1;
}
const auto operator[](int i) const {
return std::ranges::subrange(elist.begin() + start[i],
elist.begin() + start[i + 1]);
}
auto operator[](int i) {
return std::ranges::subrange(elist.begin() + start[i],
elist.begin() + start[i + 1]);
}
const auto operator()(int i, int l, int r) const {
return std::ranges::subrange(elist.begin() + start[i] + l,
elist.begin() + start[i + 1] + r);
}
auto operator()(int i, int l, int r) {
return std::ranges::subrange(elist.begin() + start[i] + l,
elist.begin() + start[i + 1] + r);
}
private:
std::vector<int> start;
std::vector<E> elist;
};
} // namespace ebi
#line 9 "graph/base.hpp"
namespace ebi {
template <class T> struct Edge {
int from, to;
T cost;
int id;
};
template <class E> struct Graph {
using cost_type = E;
using edge_type = Edge<cost_type>;
Graph(int n_) : n(n_) {}
Graph() = default;
void add_edge(int u, int v, cost_type c) {
assert(!prepared && u < n && v < n);
buff.emplace_back(u, edge_type{u, v, c, m});
edges.emplace_back(edge_type{u, v, c, m++});
}
void add_undirected_edge(int u, int v, cost_type c) {
assert(!prepared && u < n && v < n);
buff.emplace_back(u, edge_type{u, v, c, m});
buff.emplace_back(v, edge_type{v, u, c, m});
edges.emplace_back(edge_type{u, v, c, m});
m++;
}
void read_tree(int offset = 1, bool is_weighted = false) {
read_graph(n - 1, offset, false, is_weighted);
}
void read_parents(int offset = 1) {
for (auto i : std::views::iota(1, n)) {
int p;
std::cin >> p;
p -= offset;
add_undirected_edge(p, i, 1);
}
build();
}
void read_graph(int e, int offset = 1, bool is_directed = false,
bool is_weighted = false) {
for (int i = 0; i < e; i++) {
int u, v;
std::cin >> u >> v;
u -= offset;
v -= offset;
if (is_weighted) {
cost_type c;
std::cin >> c;
if (is_directed) {
add_edge(u, v, c);
} else {
add_undirected_edge(u, v, c);
}
} else {
if (is_directed) {
add_edge(u, v, 1);
} else {
add_undirected_edge(u, v, 1);
}
}
}
build();
}
void build() {
assert(!prepared);
csr = simple_csr<edge_type>(n, buff);
buff.clear();
prepared = true;
}
int size() const {
return n;
}
int node_number() const {
return n;
}
int edge_number() const {
return m;
}
edge_type get_edge(int i) const {
assert(prepared);
return edges[i];
}
std::vector<edge_type> get_edges() const {
assert(prepared);
return edges;
}
const auto operator[](int i) const {
assert(prepared);
return csr[i];
}
auto operator[](int i) {
assert(prepared);
return csr[i];
}
private:
int n, m = 0;
std::vector<std::pair<int, edge_type>> buff;
std::vector<edge_type> edges;
simple_csr<edge_type> csr;
bool prepared = false;
};
} // namespace ebi
#line 2 "matrix/base.hpp"
#include <algorithm>
#line 8 "matrix/base.hpp"
namespace ebi {
template <class T> struct matrix;
template <class T> matrix<T> identify_matrix(int n) {
matrix<T> a(n, n);
for (int i = 0; i < n; i++) {
a[i][i] = 1;
}
return a;
}
template <class T> struct matrix {
private:
using Self = matrix<T>;
public:
matrix(int n_, int m_, T init_val = 0)
: n(n_), m(m_), data(n * m, init_val) {}
matrix(const std::vector<std::vector<T>> &a)
: n((int)a.size()), m((int)a[0].size()) {
data = std::vector(n * m);
for (int i = 0; i < n; i++) {
std::copy(a[i].begin(), a[i].end(), data.begin() + i * m);
}
}
Self operator+(Self &rhs) const noexcept {
return Self(*this) += rhs;
}
Self operator-(Self &rhs) const noexcept {
return Self(*this) -= rhs;
}
Self operator*(Self &rhs) const noexcept {
return Self(*this) *= rhs;
}
Self operator/(Self &rhs) const noexcept {
return Self(*this) /= rhs;
}
friend Self operator*(const T &lhs, const Self &rhs) {
return Self(rhs) *= lhs;
}
friend Self operator*(const Self &lhs, const T &rhs) {
return Self(lhs) *= rhs;
}
std::vector<T> operator*(const std::vector<T> &rhs) noexcept {
assert(m == (int)rhs.size());
std::vector<T> res(n, 0);
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
res[i] += (*this)[i][j] * rhs[j];
}
}
return res;
}
Self &operator+=(Self &rhs) noexcept {
assert(this->size() == rhs.size());
for (int i = 0; i < n; ++i) {
for (int j = 0; j < m; ++j) {
(*this)[i][j] += rhs[i][j];
}
}
return *this;
}
Self &operator-=(Self &rhs) noexcept {
assert(this->size() == rhs.size());
for (int i = 0; i < n; ++i) {
for (int j = 0; j < m; ++j) {
(*this)[i][j] -= rhs[i][j];
}
}
return *this;
}
Self &operator*=(Self &rhs) noexcept {
int h = n, w = rhs.column_size();
assert(m == rhs.row_size());
Self ret(h, w);
for (int i = 0; i < h; ++i) {
for (int k = 0; k < m; ++k) {
for (int j = 0; j < w; ++j) {
ret[i][j] += (*this)[i][k] * rhs[k][j];
}
}
}
return *this = ret;
}
Self &operator/=(const Self &rhs) noexcept {
auto ret = rhs.inv();
assert(ret);
return *this *= ret.value();
}
Self &operator*=(const T &rhs) noexcept {
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
(*this)[i][j] *= rhs;
}
}
return *this;
}
const auto operator[](int i) const {
return std::ranges::subrange(data.begin() + i * m,
data.begin() + (i + 1) * m);
}
auto operator[](int i) {
return std::ranges::subrange(data.begin() + i * m,
data.begin() + (i + 1) * m);
}
void swap(int i, int j) {
std::swap_ranges(data.begin() + i * m, data.begin() + (i + 1) * m,
data.begin() + j * m);
}
int rank() const;
Self transposition() const {
Self res(m, n);
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
res[j][i] = (*this)[i][j];
}
}
return res;
}
std::optional<Self> inv() const {
assert(row_size() == column_size());
Self a = *this;
Self b = identify_matrix<T>(n);
for (int r = 0; r < n; r++) {
for (int i = r; i < n; i++) {
if (a[i][r] != 0) {
a.swap(r, i);
b.swap(r, i);
break;
}
}
if (a[r][r] == 0) return std::nullopt;
T x = a[r][r].inv();
for (int j = 0; j < n; j++) {
if (r < j) a[r][j] *= x;
b[r][j] *= x;
}
for (int i = 0; i < n; i++) {
if (i == r) continue;
for (int j = 0; j < n; j++) {
if (r < j) a[i][j] -= a[i][r] * a[r][j];
b[i][j] -= a[i][r] * b[r][j];
}
}
}
return b;
}
Self pow(long long k) const {
assert(row_size() == column_size() && k >= 0);
Self res = identify_matrix<T>(row_size());
Self x = *this;
while (k) {
if (k & 1) res *= x;
x *= x;
k >>= 1;
}
return res;
}
int row_size() const {
return n;
}
int column_size() const {
return m;
}
std::pair<int, int> size() const {
return {n, m};
}
private:
int n, m;
std::vector<T> data;
};
template <class T> T det(matrix<T> a) {
assert(a.row_size() == a.column_size());
T d = 1;
int n = a.row_size();
for (int r = 0; r < n; r++) {
if (a[r][r] == 0) {
for (int i = r + 1; i < n; i++) {
if (a[i][r] != 0) {
a.swap(r, i);
d = -d;
}
}
}
if (a[r][r] == 0) return 0;
d *= a[r][r];
T inv = a[r][r].inv();
for (int i = r + 1; i < n; i++) {
T x = a[i][r] * inv;
for (int j = r; j < n; j++) {
a[i][j] -= x * a[r][j];
}
}
}
return d;
}
template <class T> std::istream &operator>>(std::istream &os, matrix<T> &a) {
for (int i = 0; i < a.row_size(); i++) {
for (int j = 0; j < a.column_size(); j++) {
os >> a[i][j];
}
}
return os;
}
template <class T>
std::ostream &operator<<(std::ostream &os, const matrix<T> &a) {
for (int i = 0; i < a.row_size(); i++) {
for (int j = 0; j < a.column_size(); j++) {
os << a[i][j];
if (j < a.column_size() - 1) os << ' ';
}
if (i < a.row_size() - 1) os << '\n';
}
return os;
}
} // namespace ebi
#line 2 "modint/base.hpp"
#include <concepts>
#line 6 "modint/base.hpp"
namespace ebi {
template <class T>
concept Modint = requires(T a, T b) {
a + b;
a - b;
a * b;
a / b;
a.inv();
a.val();
a.pow(std::declval<long long>());
T::mod();
};
template <Modint mint> std::istream &operator>>(std::istream &os, mint &a) {
long long x;
os >> x;
a = x;
return os;
}
template <Modint mint>
std::ostream &operator<<(std::ostream &os, const mint &a) {
return os << a.val();
}
} // namespace ebi
#line 9 "graph/count_spanning_tree.hpp"
namespace ebi {
template <Modint mint>
mint count_spanning_tree(const std::vector<std::vector<int>> &g) {
const int n = (int)g.size();
if (n == 1) return 1;
std::vector<int> deg(n, 0);
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
if (i == j) continue;
assert(g[i][j] == g[j][i]);
deg[i] += g[i][j];
}
}
matrix<mint> L(n - 1, n - 1, 0);
for (int i = 1; i < n; i++) {
for (int j = 1; j < n; j++) {
if (i == j)
L[i - 1][j - 1] = deg[i];
else
L[i - 1][j - 1] -= g[i][j];
}
}
return det(L);
}
template <Modint mint, class T> mint count_spanning_tree(const Graph<T> &g) {
int n = g.node_number();
if (n == 1) return 1;
std::vector a(n, std::vector<int>(n, 0));
for (int i = 0; i < n; i++) {
for (auto e : g[i]) {
a[i][e.to]++;
}
}
return count_spanning_tree<mint>(a);
}
template <Modint mint>
mint count_directed_spanning_tree(const std::vector<std::vector<int>> &g,
int root, bool in = false) {
const int n = (int)g.size();
if (n == 1) return 1;
std::vector<int> d(n, 0);
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
if (i != j) d[i] += in ? g[i][j] : g[j][i];
}
}
matrix<mint> L(n - 1, n - 1, 0);
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
int a = i, b = j;
if (a == root || b == root) continue;
if (root < a) a--;
if (root < b) b--;
if (a == b)
L[a][b] = d[i];
else
L[a][b] = in ? -g[i][j] : -g[j][i];
}
}
return det(L);
}
template <Modint mint, class T>
mint count_directed_spanning_tree(const Graph<T> &g, int root, bool in = false) {
const int n = g.node_number();
if (n == 1) return 1;
std::vector d(n, std::vector<int>(n, 0));
for (int i = 0; i < n; i++) {
for (auto e : g[i]) {
d[i][e.to]++;
}
}
return count_directed_spanning_tree<mint>(d, root, in);
}
} // namespace ebi