This documentation is automatically generated by online-judge-tools/verification-helper
#include "graph/chromatic_number.hpp"
グラフの彩色数を求める。 $O(2^N N)$
高速化はほとんど行っていないため、より高速な実装が欲しい場合は Nachiaさんの記事 を見てください。
#pragma once
#include <cassert>
#include <ranges>
#include <vector>
#include "../convolution/or_convolution.hpp"
#include "../graph/base.hpp"
namespace ebi {
template <class T> int chromatic_number(const Graph<T> &g) {
int n = g.node_number();
std::vector<int> es(n, 0);
for (auto e : g.get_edges()) {
es[e.from] |= 1 << e.to;
}
std::vector<int> dp1(1 << n, 1);
for (int s : std::views::iota(0, 1 << n)) {
for (int v : std::views::iota(0, n)) {
if (((s >> v) & 1) && (s & es[v])) {
dp1[s] = 0;
}
}
}
if (dp1.back() == 1) return 1;
auto now = dp1;
for (int k : std::views::iota(2, n + 1)) {
int sz = now.size();
now = or_convolution(dp1, now);
if (now.back() > 0) {
return k;
}
for (int i : std::views::iota(0, sz / 2)) {
now[i] = now[i + sz / 2] > 0;
}
now.resize(sz / 2);
dp1.resize(sz / 2);
}
assert(0);
}
} // namespace ebi
#line 2 "graph/chromatic_number.hpp"
#include <cassert>
#include <ranges>
#include <vector>
#line 2 "convolution/or_convolution.hpp"
#line 2 "set_function/subset_transform.hpp"
#include <bit>
#line 6 "set_function/subset_transform.hpp"
namespace ebi {
template <class T> std::vector<T> subset_zeta(const std::vector<T> &a) {
int n = std::bit_width(a.size()) - 1;
assert((1 << n) == (int)a.size());
std::vector<T> ra = a;
for (int i = 0; i < n; i++) {
int w = 1 << i;
for (int p = 0; p < (1 << n); p += 2 * w) {
for (int s = p; s < p + w; s++) {
int t = s | w;
ra[t] += ra[s];
}
}
}
return ra;
}
template <class T> std::vector<T> subset_mobius(const std::vector<T> &ra) {
int n = std::bit_width(ra.size()) - 1;
assert((1 << n) == (int)ra.size());
std::vector<T> a = ra;
for (int i = 0; i < n; i++) {
int w = 1 << i;
for (int p = 0; p < (1 << n); p += 2 * w) {
for (int s = p; s < p + w; s++) {
int t = s | w;
a[t] -= a[s];
}
}
}
return a;
}
} // namespace ebi
#line 4 "convolution/or_convolution.hpp"
namespace ebi {
template <class T>
std::vector<T> or_convolution(const std::vector<T> &a,
const std::vector<T> &b) {
int n = a.size();
auto ra = subset_zeta(a);
auto rb = subset_zeta(b);
for (int i = 0; i < n; i++) {
ra[i] *= rb[i];
}
return subset_mobius(ra);
}
} // namespace ebi
#line 2 "graph/base.hpp"
#line 4 "graph/base.hpp"
#include <iostream>
#line 7 "graph/base.hpp"
#line 2 "data_structure/simple_csr.hpp"
#line 4 "data_structure/simple_csr.hpp"
#include <utility>
#line 6 "data_structure/simple_csr.hpp"
namespace ebi {
template <class E> struct simple_csr {
simple_csr() = default;
simple_csr(int n, const std::vector<std::pair<int, E>>& elements)
: start(n + 1, 0), elist(elements.size()) {
for (auto e : elements) {
start[e.first + 1]++;
}
for (auto i : std::views::iota(0, n)) {
start[i + 1] += start[i];
}
auto counter = start;
for (auto [i, e] : elements) {
elist[counter[i]++] = e;
}
}
simple_csr(const std::vector<std::vector<E>>& es)
: start(es.size() + 1, 0) {
int n = es.size();
for (auto i : std::views::iota(0, n)) {
start[i + 1] = (int)es[i].size() + start[i];
}
elist.resize(start.back());
for (auto i : std::views::iota(0, n)) {
std::copy(es[i].begin(), es[i].end(), elist.begin() + start[i]);
}
}
int size() const {
return (int)start.size() - 1;
}
const auto operator[](int i) const {
return std::ranges::subrange(elist.begin() + start[i],
elist.begin() + start[i + 1]);
}
auto operator[](int i) {
return std::ranges::subrange(elist.begin() + start[i],
elist.begin() + start[i + 1]);
}
const auto operator()(int i, int l, int r) const {
return std::ranges::subrange(elist.begin() + start[i] + l,
elist.begin() + start[i + 1] + r);
}
auto operator()(int i, int l, int r) {
return std::ranges::subrange(elist.begin() + start[i] + l,
elist.begin() + start[i + 1] + r);
}
private:
std::vector<int> start;
std::vector<E> elist;
};
} // namespace ebi
#line 9 "graph/base.hpp"
namespace ebi {
template <class T> struct Edge {
int from, to;
T cost;
int id;
};
template <class E> struct Graph {
using cost_type = E;
using edge_type = Edge<cost_type>;
Graph(int n_) : n(n_) {}
Graph() = default;
void add_edge(int u, int v, cost_type c) {
assert(!prepared && u < n && v < n);
buff.emplace_back(u, edge_type{u, v, c, m});
edges.emplace_back(edge_type{u, v, c, m++});
}
void add_undirected_edge(int u, int v, cost_type c) {
assert(!prepared && u < n && v < n);
buff.emplace_back(u, edge_type{u, v, c, m});
buff.emplace_back(v, edge_type{v, u, c, m});
edges.emplace_back(edge_type{u, v, c, m});
m++;
}
void read_tree(int offset = 1, bool is_weighted = false) {
read_graph(n - 1, offset, false, is_weighted);
}
void read_parents(int offset = 1) {
for (auto i : std::views::iota(1, n)) {
int p;
std::cin >> p;
p -= offset;
add_undirected_edge(p, i, 1);
}
build();
}
void read_graph(int e, int offset = 1, bool is_directed = false,
bool is_weighted = false) {
for (int i = 0; i < e; i++) {
int u, v;
std::cin >> u >> v;
u -= offset;
v -= offset;
if (is_weighted) {
cost_type c;
std::cin >> c;
if (is_directed) {
add_edge(u, v, c);
} else {
add_undirected_edge(u, v, c);
}
} else {
if (is_directed) {
add_edge(u, v, 1);
} else {
add_undirected_edge(u, v, 1);
}
}
}
build();
}
void build() {
assert(!prepared);
csr = simple_csr<edge_type>(n, buff);
buff.clear();
prepared = true;
}
int size() const {
return n;
}
int node_number() const {
return n;
}
int edge_number() const {
return m;
}
edge_type get_edge(int i) const {
assert(prepared);
return edges[i];
}
std::vector<edge_type> get_edges() const {
assert(prepared);
return edges;
}
const auto operator[](int i) const {
assert(prepared);
return csr[i];
}
auto operator[](int i) {
assert(prepared);
return csr[i];
}
private:
int n, m = 0;
std::vector<std::pair<int, edge_type>> buff;
std::vector<edge_type> edges;
simple_csr<edge_type> csr;
bool prepared = false;
};
} // namespace ebi
#line 9 "graph/chromatic_number.hpp"
namespace ebi {
template <class T> int chromatic_number(const Graph<T> &g) {
int n = g.node_number();
std::vector<int> es(n, 0);
for (auto e : g.get_edges()) {
es[e.from] |= 1 << e.to;
}
std::vector<int> dp1(1 << n, 1);
for (int s : std::views::iota(0, 1 << n)) {
for (int v : std::views::iota(0, n)) {
if (((s >> v) & 1) && (s & es[v])) {
dp1[s] = 0;
}
}
}
if (dp1.back() == 1) return 1;
auto now = dp1;
for (int k : std::views::iota(2, n + 1)) {
int sz = now.size();
now = or_convolution(dp1, now);
if (now.back() > 0) {
return k;
}
for (int i : std::views::iota(0, sz / 2)) {
now[i] = now[i + sz / 2] > 0;
}
now.resize(sz / 2);
dp1.resize(sz / 2);
}
assert(0);
}
} // namespace ebi