This documentation is automatically generated by online-judge-tools/verification-helper
#include "fps/taylor_shift.hpp"
形式的べき級数 $f(x)$ に対して、 $f(x + c)$ を求める。 $O(N \log N)$
#pragma once
#include "../fps/fps.hpp"
#include "../math/binomial.hpp"
#include "../modint/base.hpp"
namespace ebi {
template <Modint mint>
FormalPowerSeries<mint> taylor_shift(FormalPowerSeries<mint> f, mint a) {
int d = f.deg();
Binomial<mint>::reserve(d);
for (int i = 0; i < d; i++) f[i] *= Binomial<mint>::f(i);
std::reverse(f.begin(), f.end());
FormalPowerSeries<mint> g(d, 1);
mint pow_a = a;
for (int i = 1; i < d; i++) {
g[i] = pow_a * Binomial<mint>::inv_f(i);
pow_a *= a;
}
f = (f * g).pre(d);
std::reverse(f.begin(), f.end());
for (int i = 0; i < d; i++) f[i] *= Binomial<mint>::inv_f(i);
return f;
}
} // namespace ebi
#line 2 "fps/taylor_shift.hpp"
#line 2 "fps/fps.hpp"
#include <algorithm>
#include <cassert>
#include <optional>
#include <vector>
#line 2 "modint/base.hpp"
#include <concepts>
#include <iostream>
#include <utility>
namespace ebi {
template <class T>
concept Modint = requires(T a, T b) {
a + b;
a - b;
a * b;
a / b;
a.inv();
a.val();
a.pow(std::declval<long long>());
T::mod();
};
template <Modint mint> std::istream &operator>>(std::istream &os, mint &a) {
long long x;
os >> x;
a = x;
return os;
}
template <Modint mint>
std::ostream &operator<<(std::ostream &os, const mint &a) {
return os << a.val();
}
} // namespace ebi
#line 9 "fps/fps.hpp"
namespace ebi {
template <Modint mint> struct FormalPowerSeries : std::vector<mint> {
private:
using std::vector<mint>::vector;
using std::vector<mint>::vector::operator=;
using FPS = FormalPowerSeries;
public:
FormalPowerSeries(const std::vector<mint> &a) {
*this = a;
}
FPS operator+(const FPS &rhs) const noexcept {
return FPS(*this) += rhs;
}
FPS operator-(const FPS &rhs) const noexcept {
return FPS(*this) -= rhs;
}
FPS operator*(const FPS &rhs) const noexcept {
return FPS(*this) *= rhs;
}
FPS operator/(const FPS &rhs) const noexcept {
return FPS(*this) /= rhs;
}
FPS operator%(const FPS &rhs) const noexcept {
return FPS(*this) %= rhs;
}
FPS operator+(const mint &rhs) const noexcept {
return FPS(*this) += rhs;
}
FPS operator-(const mint &rhs) const noexcept {
return FPS(*this) -= rhs;
}
FPS operator*(const mint &rhs) const noexcept {
return FPS(*this) *= rhs;
}
FPS operator/(const mint &rhs) const noexcept {
return FPS(*this) /= rhs;
}
FPS &operator+=(const FPS &rhs) noexcept {
if (this->size() < rhs.size()) this->resize(rhs.size());
for (int i = 0; i < (int)rhs.size(); ++i) {
(*this)[i] += rhs[i];
}
return *this;
}
FPS &operator-=(const FPS &rhs) noexcept {
if (this->size() < rhs.size()) this->resize(rhs.size());
for (int i = 0; i < (int)rhs.size(); ++i) {
(*this)[i] -= rhs[i];
}
return *this;
}
FPS &operator*=(const FPS &);
FPS &operator/=(const FPS &rhs) noexcept {
int n = deg() - 1;
int m = rhs.deg() - 1;
if (n < m) {
*this = {};
return *this;
}
*this = (*this).rev() * rhs.rev().inv(n - m + 1);
(*this).resize(n - m + 1);
std::reverse((*this).begin(), (*this).end());
return *this;
}
FPS &operator%=(const FPS &rhs) noexcept {
*this -= *this / rhs * rhs;
shrink();
return *this;
}
FPS &operator+=(const mint &rhs) noexcept {
if (this->empty()) this->resize(1);
(*this)[0] += rhs;
return *this;
}
FPS &operator-=(const mint &rhs) noexcept {
if (this->empty()) this->resize(1);
(*this)[0] -= rhs;
return *this;
}
FPS &operator*=(const mint &rhs) noexcept {
for (int i = 0; i < deg(); ++i) {
(*this)[i] *= rhs;
}
return *this;
}
FPS &operator/=(const mint &rhs) noexcept {
mint inv_rhs = rhs.inv();
for (int i = 0; i < deg(); ++i) {
(*this)[i] *= inv_rhs;
}
return *this;
}
FPS operator>>(int d) const {
if (deg() <= d) return {};
FPS f = *this;
f.erase(f.begin(), f.begin() + d);
return f;
}
FPS operator<<(int d) const {
FPS f = *this;
f.insert(f.begin(), d, 0);
return f;
}
FPS operator-() const {
FPS g(this->size());
for (int i = 0; i < (int)this->size(); i++) g[i] = -(*this)[i];
return g;
}
FPS pre(int sz) const {
return FPS(this->begin(), this->begin() + std::min(deg(), sz));
}
FPS rev() const {
auto f = *this;
std::reverse(f.begin(), f.end());
return f;
}
FPS differential() const {
int n = deg();
FPS g(std::max(0, n - 1));
for (int i = 0; i < n - 1; i++) {
g[i] = (*this)[i + 1] * (i + 1);
}
return g;
}
FPS integral() const {
int n = deg();
FPS g(n + 1);
g[0] = 0;
if (n > 0) g[1] = 1;
auto mod = mint::mod();
for (int i = 2; i <= n; i++) g[i] = (-g[mod % i]) * (mod / i);
for (int i = 0; i < n; i++) g[i + 1] *= (*this)[i];
return g;
}
FPS inv(int d = -1) const {
int n = 1;
if (d < 0) d = deg();
FPS g(n);
g[0] = (*this)[0].inv();
while (n < d) {
n <<= 1;
g = (g * 2 - g * g * this->pre(n)).pre(n);
}
g.resize(d);
return g;
}
FPS log(int d = -1) const {
assert((*this)[0].val() == 1);
if (d < 0) d = deg();
return ((*this).differential() * (*this).inv(d)).pre(d - 1).integral();
}
FPS exp(int d = -1) const {
assert((*this)[0].val() == 0);
int n = 1;
if (d < 0) d = deg();
FPS g(n);
g[0] = 1;
while (n < d) {
n <<= 1;
g = (g * (this->pre(n) - g.log(n) + 1)).pre(n);
}
g.resize(d);
return g;
}
FPS pow(long long k, int d = -1) const {
assert(k >= 0);
int n = deg();
if (d < 0) d = n;
if (k == 0) {
FPS f(d);
if (d > 0) f[0] = 1;
return f;
}
int low = d;
for (int i = n - 1; i >= 0; i--)
if ((*this)[i] != 0) low = i;
if (low >= (d + k - 1) / k) return FPS(d, 0);
int offset = k * low;
mint c = (*this)[low];
FPS g(d - offset);
for (int i = 0; i < std::min(n - low, d - offset); i++) {
g[i] = (*this)[i + low];
}
g /= c;
g = g.pow_1(k);
return (g << offset) * c.pow(k);
}
FPS pow_1(mint k, int d = -1) const {
assert((*this)[0] == 1);
return ((*this).log(d) * k).exp(d);
}
FPS pow_newton(long long k, int d = -1) const {
assert(k >= 0);
const int n = deg();
if (d < 0) d = n;
if (k == 0) {
FPS f(d);
if (d > 0) f[0] = 1;
return f;
}
for (int i = 0; i < n; i++) {
if ((*this)[i] != 0) {
mint rev = (*this)[i].inv();
FPS f = (((*this * rev) >> i).log(d) * k).exp(d);
f *= (*this)[i].pow(k);
f = (f << (i * k)).pre(d);
if (f.deg() < d) f.resize(d);
return f;
}
if (i + 1 >= (d + k - 1) / k) break;
}
return FPS(d);
}
int deg() const {
return (*this).size();
}
void shrink() {
while ((!this->empty()) && this->back() == 0) this->pop_back();
}
int count_terms() const {
int c = 0;
for (int i = 0; i < deg(); i++) {
if ((*this)[i] != 0) c++;
}
return c;
}
std::optional<FPS> sqrt(int d = -1) const;
static FPS exp_x(int n) {
FPS f(n);
mint fact = 1;
for (int i = 1; i < n; i++) fact *= i;
f[n - 1] = fact.inv();
for (int i = n - 1; i >= 0; i--) f[i - 1] = f[i] * i;
return f;
}
void fft();
void ifft();
};
} // namespace ebi
#line 2 "math/binomial.hpp"
#include <bit>
#line 5 "math/binomial.hpp"
#include <cstdint>
#line 7 "math/binomial.hpp"
#include <ranges>
#line 9 "math/binomial.hpp"
#line 11 "math/binomial.hpp"
namespace ebi {
template <Modint mint> struct Binomial {
private:
static void extend(int len = -1) {
int sz = (int)fact.size();
if (len < 0)
len = 2 * sz;
else if (len <= sz)
return;
else
len = std::max(2 * sz, (int)std::bit_ceil(std::uint32_t(len)));
len = std::min(len, mint::mod());
assert(sz <= len);
fact.resize(len);
inv_fact.resize(len);
for (int i : std::views::iota(sz, len)) {
fact[i] = fact[i - 1] * i;
}
inv_fact[len - 1] = fact[len - 1].inv();
for (int i : std::views::iota(sz, len) | std::views::reverse) {
inv_fact[i - 1] = inv_fact[i] * i;
}
}
public:
Binomial() = default;
Binomial(int n) {
extend(n + 1);
}
static mint f(int n) {
if (n < 0) [[unlikely]] {
return 0;
}
if (n >= (int)fact.size()) [[unlikely]] {
extend(n + 1);
}
return fact[n];
}
static mint inv_f(int n) {
if (n < 0) [[unlikely]] {
return 0;
}
if (n >= (int)fact.size()) [[unlikely]] {
extend(n + 1);
}
return inv_fact[n];
}
static mint c(int n, int r) {
if (r < 0 || n < r) return 0;
return f(n) * inv_f(r) * inv_f(n - r);
}
static mint neg_c(int k, int d) {
assert(d > 0);
return c(k + d - 1, d - 1);
}
static mint p(int n, int r) {
if (r < 0 || n < r) return 0;
return f(n) * inv_f(n - r);
}
static mint catalan_number(int n) {
return c(2 * n, n) * inv(n + 1);
}
static mint inv(int n) {
return inv_f(n) * f(n - 1);
}
static void reserve(int n) {
extend(n + 1);
}
private:
static std::vector<mint> fact, inv_fact;
};
template <Modint mint>
std::vector<mint> Binomial<mint>::fact = std::vector<mint>(2, 1);
template <Modint mint>
std::vector<mint> Binomial<mint>::inv_fact = std::vector<mint>(2, 1);
} // namespace ebi
#line 6 "fps/taylor_shift.hpp"
namespace ebi {
template <Modint mint>
FormalPowerSeries<mint> taylor_shift(FormalPowerSeries<mint> f, mint a) {
int d = f.deg();
Binomial<mint>::reserve(d);
for (int i = 0; i < d; i++) f[i] *= Binomial<mint>::f(i);
std::reverse(f.begin(), f.end());
FormalPowerSeries<mint> g(d, 1);
mint pow_a = a;
for (int i = 1; i < d; i++) {
g[i] = pow_a * Binomial<mint>::inv_f(i);
pow_a *= a;
}
f = (f * g).pre(d);
std::reverse(f.begin(), f.end());
for (int i = 0; i < d; i++) f[i] *= Binomial<mint>::inv_f(i);
return f;
}
} // namespace ebi