This documentation is automatically generated by online-judge-tools/verification-helper
#include "data_structure/fibonacci_heap.hpp"
heapと呼ばれるデータ構造の一つである. dijkstraの計算量を$O(M + N\log N)$にするなどで活用される.詳しくはreference参照.
fibonacci_heap<K, T, op> heap;
K
T
bool op(K, K)
最小heapならば以下のようになる.
bool op(int a, int b) {
return a<=b;
}
fibonacci_heap<int, int, op> heap;
計算量$O(1)$
heap.push(K k, T val)
heap.pop()
heap.top()
prioritize(node_ptr e, K k)
node_ptr = internal::fibheap_node<K, T>*
である.#pragma once
/*
reference:
http://web.stanford.edu/class/archive/cs/cs166/cs166.1186/lectures/09/Slides09.pdf
https://rsk0315.hatenablog.com/entry/2019/10/29/151823
https://en.wikipedia.org/wiki/Fibonacci_heap
*/
#include <cassert>
#include <queue>
#include <vector>
namespace ebi {
namespace internal {
template <class K, class T> struct fibheap_node {
fibheap_node *par, *prev, *next, *chr;
int sz = 0;
bool damaged = 0;
K ord;
T val;
fibheap_node(K k, T val)
: par(nullptr),
prev(this),
next(this),
chr(nullptr),
ord(k),
val(val) {}
void emplace_back(fibheap_node *e) {
if (e == nullptr) return;
prev->next = e;
e->prev->next = this;
std::swap(e->prev, prev);
}
void cut_par() {
if (par == nullptr) return;
par->sz--;
if (par->sz == 0) {
par->chr = nullptr;
}
if (par->chr == this) {
par->chr = next;
}
cut();
par = nullptr;
}
void cut() {
next->prev = prev;
prev->next = next;
next = prev = this;
}
int size() const {
return sz;
}
};
} // namespace internal
template <class K, class T, bool (*op)(K, K)> struct fibonacci_heap {
private:
using Node = internal::fibheap_node<K, T>;
using node_ptr = Node *;
node_ptr min = nullptr;
node_ptr roots = nullptr;
int sz = 0;
void update(node_ptr a) {
assert(a != nullptr);
if (!min || op(a->ord, min->ord)) {
min = a;
}
}
void merge(node_ptr a, node_ptr b) {
assert(a && b);
assert(op(a->ord, b->ord));
a->sz++;
b->par = a;
if (a->chr == nullptr)
a->chr = b;
else
a->chr->emplace_back(b);
}
int log2ceil(int m) {
int n = 1;
while ((1 << n) < m) {
n++;
}
return n;
}
public:
node_ptr push(K k, T val) {
node_ptr a = new Node(k, val);
sz++;
update(a);
if (roots == nullptr) {
roots = a;
return a;
}
roots->emplace_back(a);
is_valid();
return a;
}
void pop() {
assert(sz > 0);
roots->emplace_back(min->chr);
if (roots == min) {
roots = roots->next;
assert(roots->prev == min);
}
min->cut();
delete min;
min = nullptr;
sz--;
if (sz == 0) {
roots = nullptr;
return;
}
int n = log2ceil(size()) + 5;
std::vector<std::queue<node_ptr>> que(n);
que[roots->size()].push(roots);
roots->par = nullptr;
for (node_ptr ptr = roots->next; ptr != roots; ptr = ptr->next) {
update(ptr);
ptr->par = nullptr;
que[ptr->size()].push(ptr);
}
roots = nullptr;
for (int i = 0; i < n; i++) {
while (que[i].size() > 1) {
node_ptr first = que[i].front();
que[i].pop();
node_ptr second = que[i].front();
que[i].pop();
first->cut();
second->cut();
if (!op(first->ord, second->ord)) std::swap(first, second);
merge(first, second);
assert(first->sz == i + 1);
que[first->size()].push(first);
}
if (que[i].size() == 1) {
node_ptr ptr = que[i].front();
que[i].pop();
update(ptr);
ptr->cut();
if (roots == nullptr) {
roots = ptr;
continue;
}
roots->emplace_back(ptr);
}
}
}
T top() const {
return min->val;
}
void prioritize(node_ptr e, K k) {
assert(e && op(k, e->ord));
e->ord = k;
update(e);
if (e->par == nullptr || op(e->par->ord, e->ord)) return;
if (e->par->damaged && e->par->par != nullptr) {
e->par->cut_par();
roots->emplace_back(e->par);
}
e->par->damaged = true;
e->cut_par();
roots->emplace_back(e);
}
int size() const {
return sz;
}
bool empty() const {
return sz == 0;
}
void is_valid() const {
K k = roots->ord;
for (node_ptr ptr = roots->next; ptr != roots; ptr = ptr->next) {
if (op(ptr->ord, k)) {
k = ptr->ord;
}
}
assert(k == min->ord);
}
};
} // namespace ebi
#line 2 "data_structure/fibonacci_heap.hpp"
/*
reference:
http://web.stanford.edu/class/archive/cs/cs166/cs166.1186/lectures/09/Slides09.pdf
https://rsk0315.hatenablog.com/entry/2019/10/29/151823
https://en.wikipedia.org/wiki/Fibonacci_heap
*/
#include <cassert>
#include <queue>
#include <vector>
namespace ebi {
namespace internal {
template <class K, class T> struct fibheap_node {
fibheap_node *par, *prev, *next, *chr;
int sz = 0;
bool damaged = 0;
K ord;
T val;
fibheap_node(K k, T val)
: par(nullptr),
prev(this),
next(this),
chr(nullptr),
ord(k),
val(val) {}
void emplace_back(fibheap_node *e) {
if (e == nullptr) return;
prev->next = e;
e->prev->next = this;
std::swap(e->prev, prev);
}
void cut_par() {
if (par == nullptr) return;
par->sz--;
if (par->sz == 0) {
par->chr = nullptr;
}
if (par->chr == this) {
par->chr = next;
}
cut();
par = nullptr;
}
void cut() {
next->prev = prev;
prev->next = next;
next = prev = this;
}
int size() const {
return sz;
}
};
} // namespace internal
template <class K, class T, bool (*op)(K, K)> struct fibonacci_heap {
private:
using Node = internal::fibheap_node<K, T>;
using node_ptr = Node *;
node_ptr min = nullptr;
node_ptr roots = nullptr;
int sz = 0;
void update(node_ptr a) {
assert(a != nullptr);
if (!min || op(a->ord, min->ord)) {
min = a;
}
}
void merge(node_ptr a, node_ptr b) {
assert(a && b);
assert(op(a->ord, b->ord));
a->sz++;
b->par = a;
if (a->chr == nullptr)
a->chr = b;
else
a->chr->emplace_back(b);
}
int log2ceil(int m) {
int n = 1;
while ((1 << n) < m) {
n++;
}
return n;
}
public:
node_ptr push(K k, T val) {
node_ptr a = new Node(k, val);
sz++;
update(a);
if (roots == nullptr) {
roots = a;
return a;
}
roots->emplace_back(a);
is_valid();
return a;
}
void pop() {
assert(sz > 0);
roots->emplace_back(min->chr);
if (roots == min) {
roots = roots->next;
assert(roots->prev == min);
}
min->cut();
delete min;
min = nullptr;
sz--;
if (sz == 0) {
roots = nullptr;
return;
}
int n = log2ceil(size()) + 5;
std::vector<std::queue<node_ptr>> que(n);
que[roots->size()].push(roots);
roots->par = nullptr;
for (node_ptr ptr = roots->next; ptr != roots; ptr = ptr->next) {
update(ptr);
ptr->par = nullptr;
que[ptr->size()].push(ptr);
}
roots = nullptr;
for (int i = 0; i < n; i++) {
while (que[i].size() > 1) {
node_ptr first = que[i].front();
que[i].pop();
node_ptr second = que[i].front();
que[i].pop();
first->cut();
second->cut();
if (!op(first->ord, second->ord)) std::swap(first, second);
merge(first, second);
assert(first->sz == i + 1);
que[first->size()].push(first);
}
if (que[i].size() == 1) {
node_ptr ptr = que[i].front();
que[i].pop();
update(ptr);
ptr->cut();
if (roots == nullptr) {
roots = ptr;
continue;
}
roots->emplace_back(ptr);
}
}
}
T top() const {
return min->val;
}
void prioritize(node_ptr e, K k) {
assert(e && op(k, e->ord));
e->ord = k;
update(e);
if (e->par == nullptr || op(e->par->ord, e->ord)) return;
if (e->par->damaged && e->par->par != nullptr) {
e->par->cut_par();
roots->emplace_back(e->par);
}
e->par->damaged = true;
e->cut_par();
roots->emplace_back(e);
}
int size() const {
return sz;
}
bool empty() const {
return sz == 0;
}
void is_valid() const {
K k = roots->ord;
for (node_ptr ptr = roots->next; ptr != roots; ptr = ptr->next) {
if (op(ptr->ord, k)) {
k = ptr->ord;
}
}
assert(k == min->ord);
}
};
} // namespace ebi