This documentation is automatically generated by online-judge-tools/verification-helper
#include "convolution/xor_convolution.hpp"
長さ $2^N$ の整数列 $a$ と $b$ について、 $c_k = \sum_{i\oplus j=k} a_i b_j$ を求める。 $O(N 2^N)$
#pragma once
#include <cassert>
#include <vector>
#include "../set_function/hadamard_transform.hpp"
namespace ebi {
template <class T>
std::vector<T> xor_convolution(const std::vector<T> &a,
const std::vector<T> &b) {
assert(a.size() == b.size());
auto ta = hadamard_transform(a);
auto tb = hadamard_transform(b);
for (int i = 0; i < (int)a.size(); i++) {
ta[i] *= tb[i];
}
return hadamard_transform(ta, true);
}
} // namespace ebi
#line 2 "convolution/xor_convolution.hpp"
#include <cassert>
#include <vector>
#line 2 "set_function/hadamard_transform.hpp"
#line 4 "set_function/hadamard_transform.hpp"
namespace ebi {
template <class T>
std::vector<T> hadamard_transform(std::vector<T> f, bool inverse = false) {
int n = f.size();
for (int i = 1; i < n; i <<= 1) {
for (int j = 0; j < n; j++) {
if ((i & j) == 0) {
T x = f[j], y = f[j | i];
f[j] = x + y;
f[j | i] = x - y;
}
}
}
if (inverse) {
for (auto& x : f) {
x /= T(n);
}
}
return f;
}
} // namespace ebi
#line 7 "convolution/xor_convolution.hpp"
namespace ebi {
template <class T>
std::vector<T> xor_convolution(const std::vector<T> &a,
const std::vector<T> &b) {
assert(a.size() == b.size());
auto ta = hadamard_transform(a);
auto tb = hadamard_transform(b);
for (int i = 0; i < (int)a.size(); i++) {
ta[i] *= tb[i];
}
return hadamard_transform(ta, true);
}
} // namespace ebi