This documentation is automatically generated by online-judge-tools/verification-helper
#include "algorithm/monge_d_edge_shortest_path.hpp"
辺の重みがMongeであるようなグラフに対して $0$ からスタートして、 $N-1$ へちょうど $d$ 辺使った場合の最短路の値を求める。 $O(N\log N \log (\max))$ 。 $\max$ は $1$ 辺の最大長。
reference: Mongeグラフ上のd-辺最短路長を計算するアルゴリズム
#pragma once
#include <utility>
#include "../algorithm/golden_section_search.hpp"
#include "../algorithm/monge_shortest_path.hpp"
namespace ebi {
template <std::integral S, class F,
class T = decltype(std::declval<F>()(std::declval<int>(),
std::declval<int>()))>
T monge_d_edge_shortest_path(int n, int d, S upper, F f) {
auto dp = [&](S x) -> T {
auto g = [&](int i, int j) -> T { return f(i, j) + x; };
T c = monge_shortest_path(n, g)[n - 1];
return c - T(1) * x * d;
};
return golden_section_search(dp, -upper, upper, std::greater<T>()).second;
}
} // namespace ebi
#line 2 "algorithm/monge_d_edge_shortest_path.hpp"
#include <utility>
#line 2 "algorithm/golden_section_search.hpp"
#include <cassert>
#include <concepts>
#include <functional>
#line 7 "algorithm/golden_section_search.hpp"
#line 2 "template/int_alias.hpp"
#include <cstdint>
namespace ebi {
using ld = long double;
using std::size_t;
using i8 = std::int8_t;
using u8 = std::uint8_t;
using i16 = std::int16_t;
using u16 = std::uint16_t;
using i32 = std::int32_t;
using u32 = std::uint32_t;
using i64 = std::int64_t;
using u64 = std::uint64_t;
using i128 = __int128_t;
using u128 = __uint128_t;
} // namespace ebi
#line 9 "algorithm/golden_section_search.hpp"
namespace ebi {
// ref: https://x.com/noshi91/status/1399003086362865673
template <std::integral S, class F,
class T = decltype(std::declval<F>()(std::declval<S>())),
class Compare = std::less<T>>
std::pair<S, T> golden_section_search(F f, S min, S max,
const Compare &compare = Compare()) {
assert(min <= max);
S a = min - 1, x, b;
{
S s = 1, t = 2;
while (t < max - min + 2) {
std::swap(s += t, t);
}
x = a + t - s;
b = a + t;
}
T fx = f(x), fy;
while (a + b != 2 * x) {
S y = a + b - x;
if (max < y || compare(fx, (fy = f(y)))) {
b = a;
a = y;
} else {
a = x;
x = y;
fx = fy;
}
}
return {x, fx};
}
} // namespace ebi
#line 2 "algorithm/monge_shortest_path.hpp"
#include <limits>
#include <vector>
namespace ebi {
template <class F, class T = decltype(std::declval<F>()(std::declval<int>(),
std::declval<int>()))>
std::vector<T> monge_shortest_path(int n, F f) {
const T max = std::numeric_limits<T>::max();
std::vector<int> argmin(n, 0);
std::vector<T> dp(n, max);
dp[0] = 0;
auto get = [&](int i, int j) -> T {
T val = f(j, i);
if (val == max || dp[j] == max) return max;
return dp[j] + val;
};
auto check = [&](int i, int j) -> void {
T val = get(i, j);
if (val < dp[i]) {
dp[i] = val;
argmin[i] = j;
}
};
dp[n - 1] = get(n - 1, 0);
auto dfs = [&](auto &&self, int l, int r) -> void {
if (r - l == 1) return;
int m = (l + r) >> 1;
for (int i = argmin[l]; i <= argmin[r]; i++) {
check(m, i);
}
self(self, l, m);
for (int i = l + 1; i <= m; i++) {
check(r, i);
}
self(self, m, r);
};
dfs(dfs, 0, n - 1);
return dp;
}
} // namespace ebi
#line 7 "algorithm/monge_d_edge_shortest_path.hpp"
namespace ebi {
template <std::integral S, class F,
class T = decltype(std::declval<F>()(std::declval<int>(),
std::declval<int>()))>
T monge_d_edge_shortest_path(int n, int d, S upper, F f) {
auto dp = [&](S x) -> T {
auto g = [&](int i, int j) -> T { return f(i, j) + x; };
T c = monge_shortest_path(n, g)[n - 1];
return c - T(1) * x * d;
};
return golden_section_search(dp, -upper, upper, std::greater<T>()).second;
}
} // namespace ebi